# **Battery Characteristics & Ratings - Part 2**



 $E^0 = V_{cathode} - V_{anode}$ Theoretical Voltage of a cell -

**Theoretical Energy/Capacity** of a cell (Wh) = Voltage (V) x Charge (Ah)

Theoretical capacity (g/Ah)  $C_{cell} = 1/EC_a + 1/EC_c$  where  $EC_a$  and  $EC_c$  are electrochemical equivalent Ah/g capacities.

 $C_{cell} = EC_a + EC_c$  where  $EC_a$  and  $EC_c$  are electrochemical equivalent Ah/g capacities.

#### **Discharge Current Rate**

 $I=M.C_n$ 

*I* = Discharge current

C = Ah capacity of the battery

n = Time rating of C

*M* = Multiplier

C-Rating of a battery discharge current describes the rate at which battery is discharged relative to its max. capacity.

Consider a 1000 Amp-hours battery with a time rating of 1 hour for next 2 problems.

#### **Discharge Power Rate**

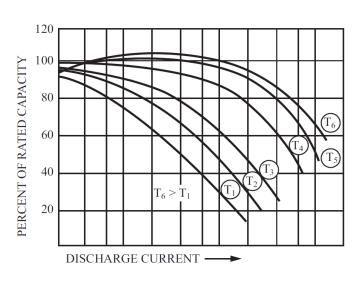
*P* = Discharge power

 $P = M.E_n$ 

E = Wh capacity of the battery

n = Time rating of E

M = multiplier


E-rating of a battery discharge power describes the rate at which battery is discharged relative to its max. capacity.

Consider a 1000 Watt-hours battery with a time rating of 1 hour for next 2 problems.

### Effect of temperature on battery capacity

For a given temperature, higher discharge current (load) results in a reduced battery capacity.

For a given discharge current (load), higher temperature results in a higher battery capacity.



## **Battery Characteristics & Ratings - Part 2**



#### **Peukert's Relation for Lead-Acid Batteries**

 $C_p = I^k t$   $C_p = Ah$  capacity for 1A constant discharge current I = Ah capacity for 1A constant discharge current I = Ah capacity for 1A constant I = Ah capacity for

### $t = H(C/1H)^k$

C = nominal Ah capacity at discharge period H (both specified by manufacturer)

*k* = Peukert's constant

*t* = actual discharge time (h) at discharge current