
Networking Operating Systems  Linux System Programming  Kernel Network Protocols TCP/IP

Memory Management  IPC RPC Multi-threading Socket Programming Asynchronous Programming

www.csepracticals.com

Telegram grp : telecsepracticals Codes : https://github.com/sachinites/TCPServerLib

http://www.csepracticals.com/


Implementing Complex TCP Servers

1. General Programming ( any main-stream language )

2. Socket Programming Basics 
accept( ) , select( )/epoll( ) , send( ) , recv( ) , close( )

3.   Basic Multi-threading ( Posix pthreads )

1. Starting a thread

2. Thread Cancellation/Thread Join

3. Mutexes & Semaphores

4.    Timers ( Starting, Restarting, Cancelling )

5.    STL lists / LinkedList

• We will write code in C++, but we will write mostly C part of C++

• C programmers can do this course easily as well

class → struct

new → malloc/calloc, delete → free

STL list → own linked lists, etc

cpp→ c

g++ → gcc

• Code organization/ Concepts / Implementation remains same

• No complex OOPs, no Templates, no C++ only thing…

We will go beyond simple implementation of client/servers

programs present all over internet ( Advanced Course )

Course objective : Learn how to implement a typical complex

Networking Socket library, closely tied to thread management

*

1. How to manage Multiple Clients through Multiplexing

2. Creating Multi-Threaded Clients

3. Forcefully disconnecting the client

4. Gracefully Shutting down TCP Server

5. Notifying events to application 

1. Client new connection

2. Client disconnection

3. Client msg recvd

6. Detecting connection live-ness using Keep Alive msgs

7. Handling Concurrency using locks

8. TCP Msg Demarcation

9. Maintaining statistics per client connection

10. Client Migration

11. Building Socket Programming C++ Library over Posix



Implementing Complex TCP Servers

1. How to manage Multiple Clients through Multiplexing

2. Creating Multi-Threaded Clients

3. Forcefully disconnecting the client

4. Gracefully Shutting down TCP Server

5. Notifying events to application 

1. Client new connection

2. Client disconnection

3. Client msg recvd

6. Detecting connection live-ness using Keep Alive msgs

7. Handling Concurrency using locks

8. TCP Msg Demarcation

9. Maintaining statistics per client connection

10. Client Migration

11. Building Socket Programming C++ Library over Posix

1. Dividing a software design into multiple threads

2. Inter thread communication 

3. Implementing Blocking Calls

4. Thread Synchronization using Semaphores, Mutexes

5. Scalable multi-threaded design

6. Understand how to write code which manage threads

7. System Design and Implementation Exercise

9. Real world meaningful project based on Thread

Management

10. Decorate Resume with this fascinating project

We will go beyond simple implementation of client/servers

programs present all over internet ( Advanced Course )

Course objective : Learn how to implement a typical complex

Networking Socket library, closely tied to thread management

Intermediate level

Touches multiple concepts

( Managing Sockets, Multi-threading, Thread Sync, 

Byte Arrays etc )



Networking Operating Systems  Linux System Programming  Kernel Network Protocols TCP/IP

Memory Management  IPC RPC Multi-threading Socket Programming Asynchronous Programming

www.csepracticals.com

Telegram grp : telecsepracticals Codes : https://github.com/sachinites/TCPServerLib

 

http://www.csepracticals.com/


Implementing Complex TCP Servers → End Product of this Course

TCP Server

Library

Application1

Application2

Uses

Uses

 Applns can create unlimited no of TCPServers

 Applns are notificed about client’s

 Connection

 Discinnection

 Msg Recvd

 Appln can incrementally build more protocols over 

TCP Server Library 

> Eg FTP Server



Implementing Complex TCP Servers → TCP-Server Working

➢ TCP-Server Working :

C1

C2

C3

Conn2

➢ TCP-Servers, On Starting, must listen on some user configured IP-Address 

and Port No

➢ TCPServers must be available to accept new connection requests from new 

clients

➢ TCPServer should be able to handle multiple Client’s Connections 

simultaneously ( through multi-threading Or multi-processing or          

multiplexing Or Whatever )

➢ TCP-Servers must handle connection disconnection

➢ Initiated by client

➢ Initiated by Server itself

➢ TCP-Servers must be able to shut-down gracefully ( disconnecting all 

clients connections, free up all resources before terminating the process )

➢ TCP-Servers must be optimized to service Maximum Clients and with as 

much high availability as Possible ( depending on machine capacity 

ofcourse )

➢ TCP-Servers must be configurable to abide by certain rules :

➢ Accept no more new connections

➢ Stop listening to all or particular client etc

Network



Implementing Complex TCP Servers → Our Project Design Overview 

C1 C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBM)

Client Data 

Request 

Service (DRS)

C1, C2…

C2

New Connection

Request ( TCP Handshake )

C2

Bidirectional

Data Communication

• Controller

• It is a Set of APIs

• APIs invoked by Appln Thread / Service Threads

• APIs to manage Service Operations

• CAS

• Responsible to accept new connection Request ( accept ())

• It is a thread

• DBMS

• Responsible to  store all connected clients

• It is a Data  structure

• DRS

• Responsible for Communication with Connected clients

• It also maintain one more copy of all connected clients

• It is a thread + Data Structure

C1, C2…



Implementing Complex TCP Servers → Our Project Design Overview 

C1 C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1, C2…

C2

New Connection

Request ( TCP Handshake )

C2

Bidirectional

Data Communication

• Services runs as separate threads in infinite loop

• TCPController acts as the central entity responsible to manage

the service threads and Client DB

• When TCPController is instantiated/Started by the application

• Controller Starts all service threads 

• Controller Initialize other resources required

• When TCPController is asked to shut-down by application :

• Controller send shut-down notification to all service threads

• Service threads release all their resources before shutting down

• Controller purge Client DB

• TCPController also facilitate communication between service 

threads, Service threads do not communicate directly but through 

TCPController

• Service Threads are not aware of each other. Simple Design, 

Scalable, Demarcation of Responsibilities, No class dependency

C1, C2…



Implementing Complex TCP Servers → Getting Started with Implementation



Bidirectional

Data Communication

TCP Handshake

Implementing Complex TCP Servers → New Client Connection (SYN) Processing Steps

C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Steps : When new Client is Connected

1. User appln is started, it calls TcpServerController ()

2. All Services are initialized, but not yet running

3. Application calls, TcpServerController()->Start()

4. All Service threads are started, TCPServer is ready

5. C1 sends SYN to TCP Server ( CAS )

6. CAS accepts a new connection and create TcpClient Object

7. CAS sends notification to application directly for new connection

8. CAS request controller to ProcessNewClient Object

9. Controller submits the AddClientToDB Request to DBMS 

10. DBMS store the new TcpClient object in DB 

11. Controller then asks DRS to start listen for this new Client Object 

ClientFDStartListen

12. DRS stores the copy of Client Object in its own local DB and start 

listening for new data request for this new Client ( along with other

already connected clients )

Client Data 

Request 

Service (DRS)

C1 C1



*Implementing Complex TCP Servers → Project Files Set Up

• Let us start with writing application file testapp.c and TcpServer Controller TcpServerController.h/.cpp

TcpServer

Controller

TcpServer Library

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1, C2…

class TcpServerController {

private:

TcpNewConnectionAcceptor *tcp_new_conn_acc;

TcpClientDbManager *tcp_client_db_mgr;

TcpClientServiceManager *tcp_client_svc_mgr;

public:

uint32_t ip_addr;

uint16_t port_no;

std::string name;

TcpServerController(std::string ip_addr, 

uint16_t port_no, std::string name);

~TcpServerController();

void Start();

void Stop();

} ;

TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp

C1, C2…

git clone https://github.com/sachinites/TCPServerLib/

Dir : TCPServerLib/Course

Dir : TCPServerLib

https://github.com/sachinites/TCPServerLib/


Implementing Complex TCP Servers → Getting Started with Implementation → Makefile Setup

TcpServer

Controller

TcpServer Library

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1, C2…
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp

C1, C2…

User 

Application

Configurations/show

testapp.cpp

 Let us Compile and build the executable

 Makefile Attached in the Resource Section



Implementing Complex TCP Servers → New Client Connection (SYN) Processing Steps

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Steps : When new Client is Connected

1. User appln is started, it calls TcpServerController ()

2. All Services are initialized, but not yet running

3. Application calls, TcpServerController()->Start()

4. All Service threads are started, TCPServer is ready

5. C1 sends SYN to TCP Server ( CAS )

6. CAS accepts a new connection and create TcpClient Object

7. CAS sends notification to application directly for new connection

8. CAS request controller to ProcessNewClient Object

9. Controller submits the AddClientToDB Request to DBMS 

10. DBMS store the new TcpClient object in DB 

11. Controller then asks DRS to start listen for this new Client Object 

ClientFDStartListen

12. DRS stores the copy of Client Object in its own local DB and start 

listening for new data request for this new Client ( along with other

already connected clients )

Client Data 

Request 

Service (DRS)

C1 C1

 Let us Start with the Implementation of our Project

TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp



Implementing Complex TCP Servers → TCP Client Data Structure

class TcpClient {

private:

public :

uint32_t ip_addr;

uint16_t port_no;

int comm_fd;

TcpServerController *tcp_ctrlr;

TcpClient(uint32_t ip_addr, uint16_t port_no);

};

TcpClient.h/.cpp

 TCPServer maintains all connected clients using TcpClient

Data Structure



Implementing Complex TCP Servers → Send Notification to UA

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp

Steps : When new Client is Connected

1. User appln is started, it calls TcpServerController ()

2. All Services are initialized, but not yet running

3. Application calls, TcpServerController()->Start()

4. All Service threads are started, TCPServer is ready

5. C1 sends SYN to TCP Server ( CAS )

6. CAS accepts a new connection and create TcpClient Object

7. CAS sends notification to application directly for new connection

8. CAS request controller to ProcessNewClient Object

9. Controller submits the AddClientToDB Request to DBMS 

10. DBMS store the new TcpClient object in DB 

11. Controller then asks DRS to start listen for this new Client Object 

ClientFDStartListen

12. DRS stores the copy of Client Object in its own local DB and start 

listening for new data request for this new Client ( along with other

already connected clients )

➢ UA registers callbacks with TCP Controller for

➢ Connection 

➢ Disconnection ( later )

➢ Msg recvd ( later )

➢ CAS invokes these callback for Connection when new client connects to TCP Server



Implementing Complex TCP Servers → Send Notification to UA

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp

➢ UA registers callbacks with TCP Controller for

➢ Connection 

➢ Disconnection ( later )

➢ Msg recvd ( later )

➢ CAS invokes these callback for Connection when new client connects to TCP Server

Three Steps :

1. Define Fn pointers as members of TcpServerController class

2. Application create callback fns and register with TcpServer

Controller

3. CAS invokes the Appl’s callback fn when Client connects to it



Implementing Complex TCP Servers → Fn to display all Connected Client

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp

void TcpClient::Display() ;

void 

TcpClientDbManager::DisplayClientDb();

void TcpServerController::Display() ;



Implementing Complex TCP Servers

www.csepracticals.com

Telegram grp : telecsepracticals

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp

http://www.csepracticals.com/


Implementing Complex TCP Servers → DRS Service

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp

➢ DRS Service is responsible for receiving messages from 

connected client and handover them to appln for processing

➢ DRS service implements select()/epoll() in a DRS thread

➢ DRS thread is blocked on select(), and unblocked as soon as 

msg is recvd from any client

➢ DRS is also called as Tcp Client Service Manager

➢ Like CAS thread, DRS thread is also started when 

TCPController Starts

➢ DRS maintains a separate copy of client database. A client 

Object is added to it by TCPController ( next slide )

Pre-requisite : You know how select() works



Implementing Complex TCP Servers → DRS Service → Adding a new Client FD to DRS

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp

ProcessNewClient

(tcp_client);

ClientFDStartListen(TcpClient *tcp_client);

AddClientToDB(TcpClient *tcp_client);

➢ TCP Controller hand-over the Client FD ( generated by CAS thread ) to DRS thread for listening

TcpClientServiceManager::ClientFDStartListen(TcpClient *);

➢ Though ClientFDStartListen() will be invoked only when new client connects to CRS , Meanwhile, DRS thread 

could be in one of the following states :

➢ blocked on select() Or 

➢ processing Client’s messages 

reset fd_set

select(fd_set)

Process all activated 

FDs in fd_set

DRS thread in infinite loop



Implementing Complex TCP Servers → DRS Service → Starting a DRS thread

class TcpClientServiceManager{

. . .

int max_fd;

fd_set active_fd_set;

fd_set backup_fd_set;

pthread_t *client_svc_mgr_thread;

std::list<TcpClient *>tcp_client_db;

. . .

}

➢ When DRS thread is starting, we would not have any Connected clients ( TCPServer is still staring its service threads .. )

➢ Include All Connected Client FDs present in DRS’s Client DB in Multiplexing in a For loop

reset fd_set

select(fd_set)

Process all activated 

FDs in fd_set



Implementing Complex TCP Servers → DRS Service → Stopping/Cancelling a DRS thread

reset fd_set

select(fd_set)

Process all activated 

FDs in fd_set

➢ We would need to stop/cancel the DRS thread 

➢ For example, Shutting down TCP Server, etc. ..

➢ What are the things in mind one should keep in mind to perform thread 

Cancellation ?

➢ One must cancel the running thread at cancellation points only 

➢ select()/epoll() is an inbuilt cancellation point

Public API to cancel the DRS thread :

void

TcpClientServiceManager::StopTcpClientServiceManagerThread(); 

DRS thread



Implementing Complex TCP Servers → DRS Service → Adding a new client FD to select()

reset fd_set

select(fd_set)

Process all activated 

FDs in fd_set

DRS thread in infinite loop

Problem Statement : 

CAS Thread wants DRS Thread to start listening on new Client FD

DRS thread could be in any state :

1. Blocked on select()

2. Servicing client’s in a for loop

Challenge : 
 if DRS thread is blocked on select, we cannot modify active_fd_set since it

being used by select()

 if DRS thread is servicing clients in a for loop, we cannot modify the active_fd_set

since it is being read by DRS thread ( Read – Write Conflict )

Solution : 
ClientFDStartListen(TcpClient *tcp_client) {
CAS Thread Cancels the DRS thread at Cancellation Points (pthread_cancel ())

CAS thread Waits for the Cancellation to complete (pthread_join() )

CAS thread Update DRS’s Client DB

CAS thread Restart the DRS Thread 

}



Implementing Complex TCP Servers → DRS Service → Adding a new client FD to select()

reset fd_set

select(fd_set)

Process all activated 

FDs in fd_set

DRS thread in infinite loop

➢ Suppose DRS thread is blocked on select() monitoring clients – say 7 & 8

➢ Meanwhile CAS thread accept a new connection, and generate a new Client 

Comm FD – say 9

➢ CAS thread invokes via TCPController

TcpClientServiceManager::

ClientFDStartListen(TcpClient *);

https://stackoverflow.com/questions/42501437/adding-new-fds-to-fd-set-while-blocking-on-select

https://stackoverflow.com/questions/9999801/add-remove-socket-descriptors-from-poll?rq=1

(Resource Section)

Add a new Client FD to DRS client DB

Update this->max_fd if required

Add a new Client FD to active_fd_set

➢ Note that, ClientFDStartListen() is called in the context of CAS thread. Challenge

here is CAS thread is trying to update the data structures which is being constantly 

read by DRS thread in infinite loop (Concurrency Issues !! )

https://stackoverflow.com/questions/42501437/adding-new-fds-to-fd-set-while-blocking-on-select
https://stackoverflow.com/questions/9999801/add-remove-socket-descriptors-from-poll?rq=1


Implementing Complex TCP Servers



Implementing Complex TCP Servers → Byte Oriented Protocol

➢ TCP is a byte-oriented protocol

➢ It sees data as stream of bytes, it recognizes no start or end 

of msg in a stream of bytes

➢ Like flow of water

Internet

TCP Process1 (P1) TCP Process2 (P2)

➢ Lets say application on TCP process1 send msg “Hello Abhishek” to TCP process2

➢ It is not necessary the P1 will send the entire msg to P2 in just one segment, Lets say MSS is set to 4B

➢ P1 will send the following segments –

[Hell]

[o Ab]

[hish]

[ek]

➢ P2 will recv 4 segmens in order

The Recipient application has no way to find

if sending TCP sent 4 msgs or 1 msg ! 



struct student {

char name[128];

int rollno;

char address[256];

};

Internet

TCP Process1 (P1) TCP Process2 (P2)

struct student stud;

. . .

sendto (&stud);

recv(buffer);

. . .

struct student *stud = 

(struct student *)buffer

Printf (stud->name);

Printf (stud->rollno);

Printf (stud->address)

This will fail if TCP delivers the

Msg in smaller chunks to application

➢ Thus, TCP does not know where the msg begins and where it ends

➢ All it knows is that msg is sequence of bytes

➢ This problem is difficult to reproduce for smaller msgs, but immediately

reproducible for larger msgs

➢ So, Question is how TCP can be used to exchange fixed size messages, like

most applications do

➢ Lets see one more scenario

Implementing Complex TCP Servers → Byte Oriented Protocol



Internet

TCP Process1 (P1) TCP Process2 (P2)

➢ TCP can also do opposite

➢ If P1 sends multiple msgs

in a loop, msgs can be

unpredictably assembled together

➢ Demo : tcp_client_string_sender.cpp

Implementing Complex TCP Servers → Byte Oriented Protocol

https://www.codeproject.com/Articles/11922/Solution-for-TCP-IP-client-socket-message-boundary



Implementing Complex TCP Servers → TCP Message Demarcation

➢ Often we need that TCP peers exchange messages of known size, but given the TCP byte-oriented nature, we can not be 

sure if entire msg is delivered to recipient or in chunks Or assembled

➢ Downloading 1GB file usually results in invoking recvfrom( ) many times ( Splitting )

➢ Sending smaller individual msgs at a high rate may results in concatenation of msgs

➢ Unless the recipient application is made intelligent to recognize the boundary of the msg, application cannot process the msg, 

splitted or assembled msgs are junks for an application which expects a fixed size message

➢ TCP downloader and uploader works smoothly with TCP being byte oriented , no message boundaries recognition is required

➢ Email Client – Need to download several emails from Email Server, need to recognize message boundaries to identify

each individual email

➢ We cannot modify the TCP protocol behavior, it is implemented this way

➢ We would need to make our application intelligent

➢ Solution lies at application layer, not at TCP layer



Implementing Complex TCP Servers → TCP Message Demarcation →Fixed Msg Size Solution

➢ TCP Message Demarcation is a technique which makes the application aware of the message boundaries

➢ Until the application recvs a complete msg, application buffer the data

➢ As soon as application recvs required number of bytes of data, application remove the data from buffer and process it

➢ Soln : Maintain a Circular buffer at application layer

➢ This is fixed size msg solution, where recipient application is hard-coded with fixed size msg

➢ What if the recipient application need to process variable size data ?



➢ Variable Size data :

➢ Size of the msg is appended in the 2B hdr of the msg payload

10 4 2

Msg send by TCP sender

Application TCP circular buffer

Implementing Complex TCP Servers → TCP Message Demarcation →Variable Msg Size Solution



Implementing Complex TCP Servers → TCP Message Demarcation

➢ Variable Size data :

➢ Size of the msg is appended in the 2B hdr of the msg payload

10 4 2 14 3 4 6 14 7 2 4 10 4 3

Snapshot of the msg accumulated in the recipient TCP Circular buffer

Recipient Application TCP circular buffer



Circular Buffer Implementation

➢ A Circular buffer is a Data structure which is nothing but a circular queue of bytes

➢ It has front and rear pointer

➢ New bytes are queues at rear

➢ Old bytes are removed from front

➢ We will implement BCB using pure C ( don’t use c++ specific things ), though file name is .cpp

➢ Implementation :

https://github.com/sachinites/TCPServerLib

Files : ByteCircularBuffer.h/.cpp

➢ Let me walk you through the hdr file :

➢ Either you do your own implementation

➢ Or understand header file interface, and use the existing one in project directly

➢ Warning :

➢ If you are going for your own implementation, integrate it with the TCP project after thorough testing

➢ Else debugging will be a nightmare, we are working at byte level !

https://github.com/sachinites/TCPServerLib


Implementing Complex TCP Servers → TCP Message Demarcation

class TcpMsgDemarcar
ByteCircularBuffer_t *bcb;

unsigned char *buffer;

class

TcpMsgFixedSizeDemarcar : 

public TcpMsgDemarcar

uint16_t msg_fixed_size;

class

TcpMsgVariableSizeDemarcar

: public TcpMsgDemarcar

virtual bool IsBufferReadyToflush() = 0;

virtual void ProcessClientMsg(
TcpClient *tcp_client) = 0;

void ProcessMsg(
TcpClient *tcp_client,
unsigned char* msg_recvd, 
uint16_t msg_size);



Implementing Complex TCP Servers → TCP Message Demarcation → TcpMsgFixedSizeDemarcar

Algorithm :

1. Let Fixed Size message is msg_fixed_size bytes

2. When TCPClient recvs the data on socket, it writes this data to BCB

3. Let total data in BCB is X = bcb->current_size bytes now

4. If X / msg_fixed_size > 0

Then remove N bytes of Data from BCB and send it to application

goto step 4

else no action

bool

TcpMsgFixedSizeDemarcar::IsBufferReadyToflush(); 

void

TcpMsgFixedSizeDemarcar::ProcessClientMsg (TcpClient *tcp_client);

class

TcpMsgFixedSizeDemarcar : 

public TcpMsgDemarcar

uint16_t msg_fixed_size;

void

TcpMsgDemarcar::

ProcessMsg (TcpClient *tcp_client,

unsigned char *msg,

uint16_t msg_size);



Implementing Complex TCP Servers → Integrating CLI Interface



Implementing Complex TCP Servers → Integrating CLI Interface

➢ As the Size of the project grows, it becomes difficult to configure, test or change the run time behavior of the 

project without proper interactive interface

➢ We will integrate CLI interface to our project to make our life easy, We can add any custom show , config CLIs

➢ We will use CLI library and integrate it with our project 

➢ Use it with several other C/C++ projects freely

➢ Appendix C1 and C2 contains a mini-course to walk you through the CLI library we will going to use

➢ Many of my courses already uses this library to provide CLI interface

➢ Pls go through appendix C , from next lecture video we will do integration of CLI library with our project

➢ Skip this entire section if you are already using some other CLI library, pls use with which you are already familiar with



Implementing Complex TCP Servers → Integrating CLI Interface

➢ config tcp-server <name> 

➢ config tcp-server <name> start

➢ config tcp-server <name> <ip-addr> <port-no>

➢ config tcp-server <name> abort

➢ show tcp-server <name>



Implementing Complex TCP Servers → Integrating CLI Interface

Steps

1. Download LibCLI library from github

git clone https://github.com/sachinites/CommandParser

2. Place CommandParser Dir in TCPServerlib/Course

3. Update Makefile now

4.   Writing CLIs

➢ config tcp-server <name> 

➢ config tcp-server <name> start

➢ config tcp-server <name> <ip-addr> <port-no>

➢ config tcp-server <name> abort

➢ show tcp-server <name>

https://github.com/sachinites/CommandParser


Implementing Complex TCP Servers → TCP Server States

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

Client Data 

Request 

Service (DRS)

C1 C1
TcpNewConnectionAcceptor.h/.cpp

TcpClientDbManager.h/.cpp TcpClientServiceManager.h/.cpp

TcpServerController.h/.cpp
testapp.cpp



Implementing Complex TCP Servers → TCP Server States

➢ If we could keep a track of TCP Server, then it would help us to have better control over the project

➢ TCP Server States :

#define TCP_SERVER_INITIALIZED (1)

#define TCP_SERVER_RUNNING (2)

#define TCP_SERVER_NOT_ACCEPTING_NEW_CONNECTIONS (4)

#define TCP_SERVER_NOT_LISTENING_CLIENTS (8)

#define TCP_SERVER_CREATE_MULTI_THREADED_CLIENT (16)

Note :States are not mutually exclusive

CLI : config tcp-server <tcp-server-name> [no] disable-conn-accept

Set flag TCP_SERVER_NOT_ACCEPTING_NEW_CONNECTIONS

TCP Server must Stop the CAS

void TcpServerController::StopConnectionsAcceptorSvc();

void TcpServerController::StopConnectionsAcceptorSvc();

CLI : config tcp-server <tcp-server-name> [no] disable-client-listen

Set flag TCP_SERVER_NOT_LISTENING_CLIENTS

TCP Server must stop the DRS 

void TcpServerController::StopClientSvcMgr();

void TcpServerController::StartClientSvcMgr();



Implementing Complex TCP Servers → TCP Server States

➢ Before Proceeeding further, we must first introduce the API in TcpNewConnectionAcceptor class and 

TcpClientServiceManager class which shall be responsible to start and stop the respective threads

➢ Let us introduce the Stop() method in both classes

➢ For Starting the Service threads, we already have APIs ( Check Start() of TcpServerController class )

➢ Finally Implement Stop() method in TcpServerController Class which shall be responsible to shutdown TCPServer, 

releasing all resources (closing open connections, cancelling all Svc threads, cleaning up all data structures ) etc

➢ CLI : config tcp-server <server-name> abort

Stop() in CAS class Stop() in DRS class

Cancel the CAS thread Cancel the DRS thread

close( this->accept_fd ); Cleanup local client DB

delete the service altogether delete the Svc altogether



Implementing Complex TCP Servers → Integrating CLI Interface

TCP Server

TCP Client

1.1.1.1   2000

10.1.1.1   4000

TcpClient

ip_addr = 1.1.1.1

port_no = 2000

server_ip_addr = 10.1.1.1

server_port_no = 4000

accept()

connect()

Passive Opener

active Opener

Network



Implementing Complex TCP Servers → Closing Connection 



Implementing Complex TCP Servers → Closing Connection 

➢ When either party ( Server Or Client ) wants to close the connection, they system call close() is used

Internet

TCP Client

TCP Server

➢ Anyone, Client or Server can initiate connection termination by invoking close() on a connection

➢ Whoever invoke close() first is called active closer, the other one is called passive closer

➢ Procedure in connection closing . . .



Active closer

(client)

Passive closer

(Server)

1

2

4

Client Wishes to 

terminate the 

connection. Using 

close(), Client sends FIN 

segment to TCP Server

Since Server knows that 

Client is looking to 

terminate the connection, it 

will also initiate connection 

termination by sending FIN 

segment to client

3
Client has closed the 

connection successfully. After 

this point, Client cannot send 

Segment with progressive 

Seq# anymore. However, it 

can only ACKnowledge the 

segments coming from Server

(Half Close)

Server Receives 

Connection Termination 

request. Server 

Acknowledges the 

request by sending ACK

Client Approves the 

Connection termination 

request by sending ACK 

with ACK# = 1601, 

approving segment 1600 

send in step 3

TCP connection 

has been shutdown 

in both directions

➢ Closing of the connection takes exchange of 4 

segments

➢ 2 and 4 are pure ACKs , which do not consume 

sequence number (notice, for 2 and 3 Sequence no 

is same = 1600)

Implementing Complex TCP Servers → Closing Connection 



Implementing Complex TCP Servers → Closing Connection 

➢ But I wish things were simpler in real life … 

Internet

TCP Client

TCP Server

➢ A FIN pkt may get lost, OR its ACK may get lost

➢ The network in the middle may have failed

➢ The Peer Machine may have got crashed

➢ So, invoking close() doesn’t really guarantee that both machine would terminate the TCP connection gracefully

➢ Hence - Concept of TCP-Keep-Alive messages



Implementing Complex TCP Servers → Closing Connection →Keep Alive Messages 

➢ In the scenario where it is necessary for communicating peer to know that other peer is ALIVE or not, both machines

need to periodically exchange TCP Keep-Alive Messages ( Heartbeat Messages )

Internet

TCP Client

TCP Server

➢ Let’s say both Machines exchanges TCP KA msgs over TCP connection with a periodic time interval of 10s

➢ Hold time is 15 sec 

➢ Each Peer may either terminate the connection voluntarily by invoking close() Or

➢ If a machine do not RECV KA msg for hold-time sec, then machine assumes remote peer is no more alive, and hence

invoke close() and cleanup the connection

➢ TCP Specification doesn’t say anything about KA msgs. So, it is application’s choice to decide exchange of TCP KA alive

msgs is required or not . Eg : File Downloader do not need to setup KA msg exchanges.

➢ You can choose whatever msg format for KA msgs, it differ from application to application. Standard Application

standardizes the KA msg format. Eg BGP



Implementing Complex TCP Servers → Closing Connection →Keep Alive Messages 

➢ Let’s Enhance our TCPServer

➢ Our TCP Server would run the Expiration timer per client as soon as a client gets connected, duration of 10 sec

➢ Any client connected to our TCPServer need to send KA msgs periodically at an interval of 10 sec

➢ TCP-Server shall refresh the expiration timer as soon as KA msg is recvd from Client

➢ Our TCP Server abort the client connection if KA msg is not recvd within hold time ( 15 sec )

➢ Need to Use Timer Library for this functionality to implement

➢ Let’s spend 30 minutes to ramp up on using Timer Library

➢ If you have your own library, you may use that . . .



Implementing Complex TCP Servers → Closing Connection →Summary

➢ Communication Parties closes the connection :

➢ Either voluntarily by invoking close () when connection is no more required

➢ Passively, upon expiration of KA timer

➢ KA timer ensures that there are no bogus/false connection left open either on client or server side



Implementing Complex TCP Servers → Closing Connection → Implementation

➢ Let TCP Server has an instance of global timer thread , called Wheel Timer



C1 C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

C1, C2…

C2

New Connection

Request ( TCP Handshake )

C2

Bidirectional

Data Communication

Steps : When Client initiated Disconnect

1. DRS recv zero bytes in recvfrom() call

2. DRS concludes Client has invoked connection close

3. DRS sends connection disconnection notification to application

4. DRS removed this Client from its local DB using 

RemoveClientFromDB and stop listening for it

5. DRS submit RemoveClientFromDB Request to Controller

6. Controller deletes the Client Object from Centralized DBMS

7. TcpClient Object is destroyed Completely using Abort()

Client Data 

Request 

Service (DRS)

Implementing Complex TCP Servers → Client Originated Dis-Connection Sequence Steps

C1, C2…



C1 C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

C1, C2…

C2

New Connection

Request ( TCP Handshake )

C2

Bidirectional

Data Communication

Steps : When Application initiates Disconnect for some Client

1. Application submit ProcessClientDelete request to controller for 

Client Disconnection

2. Controller deletes the ClietObject from DBMS using 

RemoveClientFromDB

3. Controller then Ask DRS to stop listen for this Client using 

ClientFDStopListen

4. DRS honors the request and delete Client Object from its local 

DB and Stop listening for it

5. TcpClient object is Completely Destroyed

Client Data 

Request 

Service (DRS)

Implementing Complex TCP Servers → Application Originated DisConnection Sequence Steps

C1, C2…



C1 C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr (DBMS)

C1, C2…

C2

New Connection

Request ( TCP Handshake )

C2

Bidirectional

Data Communication

Centralized DBMS Store should be Thread Safe ( protected by locks )

1. CAS, on creating a new TCP Client Object, update the DBMS 

using Controller APIs ( CAS thread in Action )

2. DRS, on clients-initiated connection disconnection, update the 

DBMS using  Controller APIs ( DRS thread in Action )

3. Application, using Controller APIs, initiate Client connection 

termination resulting in DBMS update ( Appn thread in Action )

• Hence All Access to Central DBMS by be 

protected by locks

Client Data 

Request 

Service (DRS)

Implementing Complex TCP Servers → Central DBMS Access

C1, C2…



Implementing Complex TCP Servers → Our Project Design Overview 

➢ So , this was our project high level discussion of base design and features

➢ We will discuss some more add on later once we finish the project to this point

➢ Message liveness detection using Keep-Alives

➢ TCPServer in Client Mode

➢ Launching Multi-Threaded Client

➢ Client Migration

➢ Let us start with the project implementation

➢ Will be showing all codes on C like C++ only ( no Complex OOPs, No Templates etc )

➢ Python, Java, JS developers can also pursue this course,  they just have to write line-by-line equivalent code

➢ Thread Lib used : Pthreads

➢ You are free to use C++ inbuilt threading lib std::thread instead if you are use to of it

➢ Pure C programmers continue to use pthreads only 



Networking Operating Systems  Linux System Programming  Kernel Network Protocols TCP/IP

Memory Management  IPC RPC Multi-threading Socket Programming Asynchronous Programming

www.csepracticals.com

Telegram grp : telecsepracticals

http://www.csepracticals.com/


C1 C1

TcpServer

Controller

TcpServer Library

User 

Application

Configurations/show

Connection 

Acceptor 

Service (CAS)

Client DB 

Mgr Service 

(DBMS)

C1, C2…

C2

New Connection

Request ( TCP Handshake )

C2

Bidirectional

Data Communication

Client Data 

Request 

Service (DRS)

Implementing Complex TCP Servers → Project Files

C1, C2…

TcpController.cpp/.h

TcpNewConnectionAcceptor .cpp/.h

TcpClientDbManager.cpp/.h

TcpClientServiceManager.cpp/.h

testapp.c

TcpClient.cpp/.h


