
What is Docker? And Why?

Docker is a container technology: A tool for creating and managing containers

Container

A standardized unit of 
software

A package of code and
dependencies to run that 

code (e.g. NodeJS code + the 
NodeJS runtime)

Support for Containers is built 
into modern operating systems!

The same container always 
yields the exact same 

application and execution 
behavior! No matter where or 
by whom it might be executed.

Docker simplifies the creation 
and management of such 

containers



Let’s Take A Step Back

A Picnic Basket

Dishes

Food



Let’s Take A Step Back

A Picnic Basket

It’s portable It contains food and 
dishes

You can share it and use 
it everywhere

No special environment 
or tools are required



Why Containers?

Why would we want independent, standardized “application packages”?

Different Development & 
Production Environments

Different Development 
Environments Within a 

Team / Company

Clashing Tools / Versions 
Between Different 

Projects

We want to build and test 
in exactly (!) the same 

environment as we later 
run our app in

Every team member 
should have the exactly (!) 
same environment when 

working on the same 
project

When switching between 
projects, tools used in 

project A should not clash 
with tools used in project 

B



The Problems

Development Environment Production Environment

Development Environment 
for Employee A

Development Environment 
for Employee B

Tools & Libraries required 
for Project A

Tools & Libraries required 
for Project B

Environment: The runtimes, languages, frameworks 
you need for development

often not the same

often not the same

often not the same



We Want Reliability & Reproducible Environments

We want to have the exact same environment for
development and production è This ensures that 

it works exactly as tested

It should be easy to share a common 
development environment/ setup with (new) 

employees and colleagues

We don’t want to uninstall and re-install local 
dependencies and runtimes all the time



Solution: Virtual Machines / Virtual Operating Systems

Your Operating System

Virtual OS
(e.g. Linux)

Libraries, Dependencies, 
Tools

App A

Virtual OS
(e.g. Linux)

Libraries, Dependencies, 
Tools

App B

Virtual OS
(e.g. Linux)

Libraries, Dependencies, 
Tools

App C



Solution: Virtual Machines / Virtual Operating Systems

Your Operating System

Virtual OS
(e.g. Linux)

Libraries, Dependencies, 
Tools

App A

Virtual OS
(e.g. Linux)

Libraries, Dependencies, 
Tools

App B

Virtual OS
(e.g. Linux)

Libraries, Dependencies, 
Tools

App C

Wastes a lot of space on your hard drive and tends 
to be slow



Virtual Machines / Virtual OS: Summary

Pro Con

Separated environments

Environment-specific 
configurations are possible

Environment configurations can be 
shared and reproduced reliably

Redundant duplication, waste of 
space

Performance can be slow, boot 
times can be long

Reproducing on another computer/ 
server is possible but may still be 

tricky



Docker Helps You Build & Manage “Containers”

Your Operating System

OS Built-in / Emulated Container Support

Libraries, Dependencies, 
Tools

App A

Libraries, Dependencies, 
Tools

App B

Libraries, Dependencies, 
Tools

App C

Docker Engine

Container Container Container



Containers vs Virtual Machines

Docker Containers Virtual Machines

Low impact on OS, very fast, 
minimal disk space usage

Sharing, re-building and 
distribution is easy

Encapsulate apps/ environments 
instead of “whole machines”

Bigger impact on OS, slower, 
higher disk space usage

Sharing, re-building and 
distribution can be challenging

Encapsulate “whole machines” 
instead of just apps/ environments



Docker Setup

macOS Windows Linux

Install Docker Engine on 
Linux

(see attached resources)

Require-
ments met

Require-
ments not 

met

Install Docker Desktop

Install Docker Toolbox

Require-
ments not 

met

Require-
ments met



Docker Tools & Building Blocks

Docker Engine Docker Desktop (incl. 
Daemon & CLI) Docker Hub Docker Compose

Kubernetes



Course Outline

Getting Started & Overview

Images & Containers

Data & Volumes
(in Containers)

Containers & 
Networking

Multi-Container Projects

Using Docker-Compose

“Utility Containers”

Deploying Docker 
Containers

Kubernetes Introduction 
& Basics

Kubernetes: Data & 
Volumes

Kubernetes: Networking

Deploying a Kubernetes 
Cluster

Foundation ”Real Life” Kubernetes



Getting The Most Out Of This Course

Watch the Videos At your pace – use the 
video player controls

Code along Pause videos, code 
along, code ahead

Repeat Concepts Repeat videos or 
sections if unclear

Google, Stackoverflow Search the web in case 
of errors

Ask & Answer in Q&A Section Ask and help others in 
the Q&A board


