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A B S T R A C T   

The majority of global energy scenarios anticipate a structural break in the relationship between energy con-
sumption and gross domestic product (GDP), with several scenarios projecting absolute decoupling, where en-
ergy use falls while GDP continues to grow. However, there are few precedents for absolute decoupling, and 
current global trends are in the opposite direction. This paper explores one possible explanation for the historical 
close relationship between energy consumption and GDP, namely that the economy-wide rebound effects from 
improved energy efficiency are larger than is commonly assumed. We review the evidence on the size of 
economy-wide rebound effects and explore whether and how such effects are taken into account within the 
models used to produce global energy scenarios. We find the evidence base to be growing in size and quality, but 
remarkably diverse in terms of the methodologies employed, assumptions used, and rebound mechanisms 
included. Despite this diversity, the results are broadly consistent and suggest that economy-wide rebound effects 
may erode more than half of the expected energy savings from improved energy efficiency. We also find that 
many of the mechanisms driving rebound effects are overlooked by integrated assessment and global energy 
models. We therefore conclude that global energy scenarios may underestimate the future rate of growth of 
global energy demand.   

1. Introduction 

1.1. Background: the important role of energy efficiency, and the threat of 
rebound 

Improved energy efficiency is expected to play a central role in 
meeting both the goals of the Paris Agreement [1] and the Sustainable 
Development Goals [2], contributing up to 40% of the envisaged re-
ductions in global greenhouse gas (GHG) emissions over the next two 
decades [3,4]. However, whilst energy efficiency is firmly embedded as 
a key mitigation strategy within Integrated Assessment Models (IAMs) 
[5], there are few signs that the rate of growth of global energy demand 
is slowing. Indeed, after nine years of slower global economic growth 

following the 2008 global recession, global primary energy consumption 
increased by 2.1%/year in 2017 and 2.3%/year in 2018 [6], close to the 
average of ~2.4%/year over the last 250 years [7]. Between 1971 and 
2018, global GDP (in US$2010 constant prices) grew by an average of 
3.1%/year [8] while global primary and final energy consumption 
increased by an average of 2.0%/year and 1.8%/year, respectively [9]. 
This is relative decoupling, since energy consumption grew more slowly 
than GDP, but there is no historical global experience of absolute 
decoupling, where energy use falls while GDP continues to grow. 

There is some experience of absolute decoupling at the national 
level, but only for a limited number of countries (e.g., the UK and 
Denmark) for relatively short periods of time [10,11]. These examples of 
absolute decoupling have been partly achieved by ‘offshoring’ domestic 
manufacturing to other countries [12,13]. In their analysis of 99 
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countries over the period 1971–2010, Csereklyei et al. [10,14] find 
relatively stable cross-sectional relationships between per-capita pri-
mary energy use (EP) and per-capita constant GDP (Y) exchanged at 
purchasing power parity (PPP) basis, with an elasticity (of EP with 
respect to Y) of ~0.7. This relationship implies that richer countries are 
less energy intensive and that, on average, a 1% increase in per-capita 
income is associated with a 0.3% decrease in per-capita primary en-
ergy intensity (EP/Y). Semieniuk et al. [15] analysed 185 countries over 
the period 1950–2014 and found an even stronger correlation (Spear-
man’s rank coefficient of 0.86) between per-capita primary energy use 
and per-capita (PPP) GDP, with an elasticity of 0.89 for most of the 
sample. 

In this context, the global energy scenarios from the International 
Energy Agency (IEA) [4], the Intergovernmental Panel on Climate 
Change (IPCC) [16], and other organisations represent a significant 
departure from the historical trend. These scenarios commonly project 
low or no growth in energy demand over the next few decades, due to a 
combination of structural change and the more rapid uptake of energy 
efficient technologies [15]. Energy demand in lower-income regions is 
projected to grow slowly, despite the need for large-scale investment in 
infrastructure and heavy industry [17,18], and in many scenarios this 
increase is more than offset by reductions in energy demand in 
high-income regions. For example, a review of 2 ◦C scenarios from three 
IAMs (TIAM-Grantham, MESSAGE-GLOBIOM, and WITCH) found 
average changes in global final energy demand of between +0.2%/year 
and − 0.9%/year in the period from 2020 to 2050 [5]. The top end of this 
range (+0.2%/year) is only a tenth of the average rate of increase since 
1971, while (given the assumption of economic growth continuing at 
2–3%/year [19]) the bottom end of the range (− 0.9%/year) represents 
significant levels of absolute decoupling. 

Most scenarios also project an immediate acceleration in the rate of 
decoupling, but there is little evidence that such an acceleration is un-
derway. Indeed, global primary energy intensity fell by only 1.3%/year 
in 2018, the lowest annual fall for a decade, and the fourth year in a row 
that the rate of improvement has declined [20]. The common response 

to this slow rate of progress is to call for rapid implementation of more 
ambitious energy efficiency policies [20]. However, given that manda-
tory energy efficiency polices already cover 35% of global final energy 
use in 2018 [20], it is not certain that a step change in energy efficiency 
policies would deliver the envisaged reduction in energy consumption. 

A failure to achieve the anticipated structural break in the rate of 
growth of global energy demand could have important consequences. If 
greater decoupling of energy consumption from GDP is not achieved, it 
will be necessary to rely more heavily on low-carbon energy supply, 
carbon capture and storage, and negative emission technologies to meet 
the Paris Agreement goals. These strategies require ambitious policies, 
large-scale investment, extensive land use, and significant lead-times – 
so expanding them further will be politically challenging and will take 
time to have an effect. Hence, further investigation of the prospects for 
absolute decoupling, and the possible obstacles to that decoupling, is 
warranted. 

This paper explores one possible explanation for the historical 
close coupling between energy consumption and GDP, namely that 
economy-wide rebound effects from improved energy efficiency are larger 
than is commonly assumed. We use the term ‘rebound effects’ to refer to 
a variety of behavioural and economic responses to improved energy 
efficiency, whose net result is to reduce energy savings relative to a 
counterfactual scenario in which those responses do not occur [21]. If 
rebound effects are large, absolute decoupling will be more difficult to 
achieve [22]. Whilst energy rebound research was historically driven by 
a focus on the energy supply and economic implications of improved 
energy efficiency [23–25], added recent impetus has been given by the 
implications for climate change and climate policies [26,27]. We review 
the evidence on the size of economy-wide rebound effects and explore 
whether and how such effects are taken into account within the models 
used to produce global energy scenarios. We argue that: first, the evi-
dence suggests economy-wide rebound effects may erode more than half 
of the potential energy savings from improved energy efficiency; second, 
the models used by the IPCC and others take insufficient account of these 
rebound effects; and third, the resulting scenarios may therefore 

Nomenclature 

Abbreviations/Acronyms 
AEEI autonomous energy efficiency improvements 
AIM Asia-Pacific Integrated Model 
CES Constant Elasticity of Substitution 
CGE Computable General Equilibrium 
GCAM Global Change Analysis Model 
GDP gross domestic product 
GHG Greenhouse Gas 
GLOBIOM Global Biosphere Management Model 
IAM Integrated Assessment Model 
IEA International Energy Agency 
IMAGE Integrated Model to Assess the Global Environment 
IPCC Intergovernmental Panel on Climate Change 
IRENA International Renewable Energy Agency 
MAgPIE Model of Agricultural Production and its Impact on the 

Environment 
MER Market Exchange Rate 
MESSAGE Model of Energy Supply Systems And their General 

Environmental Impact 
PIEEI Price Induced Energy Efficiency Improvements 
PPP Purchasing Power Parity 
REMIND Regional Model of Investments and Development 
SSP Shared Socioeconomic Pathway 
USEIA US Energy Information Administration 
WEM World Energy Model 

WEO World Energy Outlook 

Symbols (and Units) 
EP Primary energy use (measured in e.g., Joules/year) 
E/Y Energy intensity (measured in e.g., $US/Joule) 
Y Gross Domestic Product (GDP), Gross Output (measured in 

e.g., $US/year) 
θE Energy efficiency (Y/E) in economic terms (measured in e. 

g., $US/Joule) 
K Capital stock (measured in e.g., $US/year) 
L Labour inputs (measured in e.g., work hours/year or 

number of workers/year) 
E Energy inputs (measured in e.g., Joules/year) 
M Materials inputs (measured in e.g., tonnes/year) 
U useful exergy output (measured in e.g., Joules/year) 
X primary exergy input (measured in e.g., Joules/year) 
It Aggregate energy intensity (Et/Yt) at time t (measured in e. 

g., $US/Joule) 
At total factor productivity, at time t (dimensionless) 
λ ‘factor neutral’ technical change (dimensionless) 
π ‘capital-augmenting’ technical change (dimensionless) 
ρ ‘labour–augmenting’ technical change (dimensionless) 
τ Energy-augmenting technical change (dimensionless) 
υ ‘materials-augmenting’ technical change (dimensionless) 
ε primary-to-useful exergy efficiency (ratio, dimensionless) 
t0 time at initial period, 0 
t1 time at subsequent period, 1  
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underestimate the future rate of growth of global energy demand. 

1.2. Review outline 

There are five elements to this Review (Sections 2–6), leading to the 
Discussion and Conclusions (Sections 7 and 8). The starting point is 
Section 2, which compares the historical trend (1971–2018) in global 
final energy consumption with those projected by 17 selected global 
energy scenarios (2018–2050). The aim is to establish the historical 
relationship between final energy consumption and GDP and to identify 
how this is projected to change in the selected scenarios. We find that 
many scenarios project a significant break in the relationship between 
energy use and GDP - thereby raising questions about their plausibility 
[15]. The remaining sections investigate whether large, economy-wide 
rebound effects could help explain the historical linkage between en-
ergy use and GDP and hence whether these effects could obstruct any 
future decoupling. Section 3 presents the different definitions of 
improved energy efficiency, and describes how different types of 
rebound effects may erode the anticipated energy savings. We clarify the 
mechanisms contributing to direct, indirect, and macroeconomic 
rebound effects and show how these combine to create an overall 
economy-wide rebound effect. 

Sections 4 and 5 review the empirical evidence on the size of these 
economy-wide rebound effects. Section 4 summarises the results from 
21 studies that use computable general equilibrium (CGE) models to 
estimate rebound effects, while Section 5 summarises the results from 12 
studies that use a range of other methods. The selected studies were 
identified from keyword searches in Google Scholar, using the criteria 
that: a) they estimate rebound effects at the economy-wide level; and b) 
they explicitly or implicitly include one or more macroeconomic 
rebound effects. While this is a narrative review rather than a systematic 
review of the type by Sorrell [21], we include a broad selection of studies 
in this area,1 which serves to give a representative sample of reported 
rebound magnitudes, from studies with a broad range of methods and 
assumptions. 

Sections 4 and 5 demonstrate that the majority of empirical studies 
estimate economy wide rebound effects of 50% or more, suggesting that 
at least half of the potential energy savings from improved energy effi-
ciency may be ‘taken back’ by various economic and behavioural re-
sponses. Section 6 then examines whether and how the mechanisms 
contributing to these rebound effects are included in the integrated 
assessment and global energy models used to produce global energy 
scenarios (seen in Section 2). We demonstrate that the majority of 
models only include a subset of these mechanisms, thereby creating the 
risk that they underestimate the size and importance of economy-wide 
rebound effects. 

Section 7 discusses the extent to which the omission of some or all of 
these mechanisms could lead to over-optimistic projections of the future 
decoupling of energy consumption from GDP. Finally, Section 8 con-
cludes by highlighting some of the implications for research and energy 
modelling. 

2. Structural breaks in global final energy demand 

To establish the nature and scale of the anticipated structural break 
between historical trends and future projections of global final energy 
consumption, we collate and compare data from a range of sources. We 
focus upon final rather than primary energy consumption since this 
avoids the difficulties created by different conventions for measuring 

primary energy – which become more important as non-fossil sources 
form a larger share of the global energy mix [28,29].2 

For historical trends over the period 1971–2018, we take global final 
energy consumption data (in TJ/year) from the IEA’s Extended World 
Energy Balances [9], and historical GDP data (Market Exchange Rate 
[MER] in US$2010 constant prices) from the World Bank [8]. For pro-
jections over the period 2018 to 2050, we take eight scenarios from the 
IPCC and nine scenarios from other authoritative sources (some sce-
narios have an end year of 2040). 

From the IPCC, we take four scenarios that limit warming to 1.5 ◦C 
by 2100 with a >50% probability, and four that meet the 2.0 ◦C target 
with >66% probability [30–32]. These scenarios are derived from a 
number of IAMs and assume different levels of population [33] and 
different patterns of demographic, political, and economic development 
-via alternative Shared Socioeconomic Pathways (SSPs) [34].3 They also 
lead to different atmospheric concentrations of GHGs - the IPCC’s 
Representative Concentration Pathways (RCPs). In addition, we take 
global energy scenarios from the IEA [4,35,36], the International 
Renewable Energy Agency (IRENA) [37], Greenpeace [38], the US En-
ergy Information Administration (USEIA) [39], bp [40], and Shell [41]. 
These scenarios are derived from a variety of global energy models and 
represent a range of outcomes for global average temperature. 

We align the GDP projections in these scenarios to our historical data 
via constant MER values in $US2010 prices4 and the final energy con-
sumption projections to our historical data in TJ. Table 1 summarises the 
different scenarios, Fig. 1 presents the historical and projected trends in 
global final energy consumption and GDP, and Fig. 2 indicates the 
corresponding changes in global final energy intensity. 

The structural break in energy-GDP relationships in many of the 
model scenarios can be seen in Fig. 1 (final energy demand) and Fig. 2 
(annual change of final energy intensity). In 9 of the 15 scenarios, final 
energy intensity (EF/Y) falls by more than 2.4%/year every year be-
tween 2020 and 2030 (Table 1) - more than double the average rate of 
decline since 1971 (1.2%/year). Nearly all the scenarios imply a struc-
tural break in energy-GDP relationships, but the size of this break de-
pends upon the level of ambition of the scenario, the structure of the 
model, and the assumptions for key parameters and variables. 

Three other notable features are apparent. First, as climate targets 
tighten, the scenarios tend towards absolute decoupling of final energy 
consumption from GDP. For example, the mean rate of growth of final 
energy consumption in the IPCC 1.5 ◦C scenarios is +0.0%/year, while 
that in the 2.0 ◦C scenarios is +0.9%/year – which is still only half the 
average rate of growth since 1971 (+1.8%/year). Second, the annual 
reductions in global final energy intensity (Table 1) vary from − 1.1%/ 
year to − 5.2%/year. The IPCC scenarios exhibit the largest reductions 
(− 3.1%/year) versus the other scenarios (− 2.0%/year) in the 
2020–2030 decade, and these are 2–3 times the average rate of decline 
in the preceding decade (− 0.8%/year). Third, in the period 2020–2030, 

1 The evidence base is currently both too small (n = 33) and too methodo-
logically diverse for a meta-analysis to be applied, but this remains a possibility 
for the future. 

2 Appendix A repeats the analysis for primary energy use and GDP, and finds 
very similar patterns.  

3 The baseline scenarios for the five SSPs describes future developments in 
the absence of new climate policy. These broadly correspond to: a) sustain-
ability focused growth and equity (SSP1); b) continuation of historical trends 
(SSP2); c) fragmented world of resurgent nationalism (SSP3); d) increasing 
inequality (SSP4); and d) rapid and unconstrained growth in economic output 
and energy use (SSP5).  

4 Conversion of PPP growth rates to MER growth rates via factor of 0.78, i.e. 
MER growth rate = 0.78 x PPP growth rate. 0.78 factor chosen based on two 
sources: 1. World Bank 2010$US constant MER growth rate 2000-2018 =
2.86% / IEA PPP 2018$US constant PPP growth rate 2000-2018 = 3.70% 
(Table B2, WEO 2019); and 2. World gross domestic product (GDP) annual 
growth rates calculated from EIA International Energy Outlook 2019 for 2018- 
2050 on MER basis (2.40%) and PPP basis (3.00%), https://www.eia. 
gov/outlooks/aeo/data/browser/#/?id=4-IEO2019&cases=Ref 
erence&sourcekey=0 
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Table 1 
Projected change in global final energy intensity in a selection of global energy scenarios.  

Scenario type Climate outcome Model and documentation Model Scenario Average annual change in final energy intensity (%) 

2020–2030 2030–2040 2040–2050 

IPCC scenarios ~1.5 ◦C IMAGE [42] SSP1-1.9 (sustainability) [31] − 5.3% − 2.6% − 1.2% 
MESSAGE-GLOBIOM [19] SSP2-1.9 (middle-of-the-road) [31] − 2.8% − 2.1% − 1.3% 
REMIND-MAgPIE [43] SSP5-1.9 (fossil fuel) [31] − 2.6% − 3.4% − 1.9% 
MESSAGE-GLOBIOM [19] IIASA Low Energy Demand [31] − 5.2% − 3.7% − 2.6% 

~2.0 ◦C IMAGE [42] SSP1-2.6 (sustainability) [31] − 2.9% − 2.4% − 1.8% 
MESSAGE-GLOBIOM [19] SSP2-2.6 (middle-of-the-road) [31] − 1.8% − 1.5% − 1.3% 
GCAM [44] SSP4-2.6 (regional rivalry) [31] − 2.1% − 1.4% − 1.1% 
REMIND-MAgPIE [43] SSP5-2.6 (fossil fuel) [31] − 1.9% − 2.6% − 1.9% 

IPCC model average  ¡3.1% ¡2.5% ¡1.6% 

Other scenarios ~1.5 ◦C IEA World Energy Model [45] Sustainable Development Scenario (SDS) [35] − 2.5% − 2.7% − 2.7% 

~2.0 ◦C IEA World Energy Model [45] Efficient World Scenario (EWS) [20] − 2.5% − 2.2% − 2.2% 
IRENA – N/A Renewable Energy Roadmap [37] − 2.6% − 2.2% − 2.6% 
Shell World Energy Model [46] Shell Sky Scenario [41] − 1.6% − 1.3% − 1.1% 
BP Energy Outlook model [47] Rapid transition scenario [40] N/a N/a N/a 
Mesap PLaNet model [48] Greenpeace World Energy [r]evolution [38] − 2.8% − 3.5% − 2.8% 

>2.0 ◦C IEA World Energy Model [45] Stated Policies Scenario (STEPS) [35] − 1.2% − 1.5% − 1.5% 
IEA World Energy Model [45] Current Policies Scenario (CPS) [4] − 1.2% − 1.2% − 1.2% 
EIA World Energy Projection System Plus [49]. EIA Mid GDP, mid oil price scenario [39] N/a N/a N/a  

Other scenarios average  ¡2.0% ¡2.1% ¡2.0% 

Notes. 
1. Global final energy intensity fell by an average of − 1.2%/year over the period 1971–2018, and by − 0.9%year over the period 2008–2018. 
2. The IPCC 1.5 ◦C Special report [50] uses the AIM model scenario for SSP1-1.9. However, we take the IMAGE SSP1-1.9 scenario for consistency with the previous IMAGE SSP1-2.6 scenario, and to better enable 
comparison of energy projections moving from RCP-2.6 to RCP-1.9. 
3. GCAM is the marker model for SSP4-2.6 scenario, but does not have a SSP4-1.9 scenario. In its place, for our fourth 1.5 ◦C scenario, we choose to include the MESSAGE-GLOBIOM IIASA Low Energy Demand scenario. 
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the rate of decline in energy intensity in the IPCC 1.5 ◦C scenarios 
(− 4.0%/year) is nearly twice that observed in the 2.0 ◦C scenarios 
(− 2.2%/year).5 

In summary, we observe that the structural break observed in many 
of these scenarios represents a radical departure from the historical 
trend, both in the rate of growth of final energy consumption and the 
rate of decline of final energy intensity. The plausibility of this structural 
break therefore deserves closer attention. 

3. Improved energy efficiency and economy-wide rebound 
effects 

The decoupling in the above scenarios is largely the projected result 
of improved energy efficiency throughout all sectors of the global 
economy. The scenarios include different types, sources, sizes, and costs 
of energy efficiency improvement, but these improvements may lead to 
variety of rebound effects, which may not always be captured by the 
relevant models. Hence, it is first necessary to define what ‘improved 
energy efficiency’ means and how it is commonly modelled, and then to 
clarify how rebound effects can erode the associated energy savings. 

3.1. Defining and modelling improved energy efficiency 

Energy efficiency is simply the ratio of useful outputs to energy in-
puts for a specified system – such as a motor, a machine tool, an in-
dustrial process, a firm, a sector, or an entire economy. Depending upon 
the system and the purpose at hand, inputs and outputs may be 
measured in energy terms, such as heat content or physical work; 
physical terms, such as vehicle kilometres or tonnes of steel; or economic 
terms such as value-added or GDP [51]. Energy intensity is the inverse of 
energy efficiency and is most commonly measured in economic terms. 
Different energy efficiency measures may be more or less appropriate for 
different systems and purposes. 

Empirical and modelling studies relating to energy efficiency im-
provements vary in terms of:  

1. how they define the numerator and denominator of relevant energy 
efficiency measures (e.g. first law thermodynamic, second law 
thermodynamic, physical, economic);  

2. the system boundaries to which these definitions apply (e.g. devices, 
households, firms, sectors, national economies);  

3. the methods used to aggregate different energy types (i.e. whether 
and how differences in energy quality are accounted for [52];  

4. the source of improvements in energy efficiency (e.g. exogenous 
technical change, price-induced substitution, mandatory standards);  

5. the cost of achieving those improvements (e.g. zero-cost technical 
change, high-cost regulatory standards [53]; and 

6. whether those improvements control for (or are assumed to be in-
dependent of) improvements in the productivity of other inputs, or 
increases in the utility obtained from other commodities. 

Fig. 1. Historical trends and future scenarios for global final energy use and GDP (1971–2050). Notes: Scenario plots are in four groups: orange (IEA models); green 
(1.5 ◦C IAMs); purple (2.0 ◦C IAMs) and blue (other models). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

5 The same relationship would hold between per capita energy consumption 
and per capita GDP – as demonstrated by Semieniuk et al. [15]. The largest 
disconnect is observed in the near term (2020–2030), when the rate of popu-
lation growth should be close to that during the last decade. 
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Many aggregate economic models simulate the behaviour of an 
economy by a production function of the form: Y = λf(πK, ρL, τE, υM); 
where Y is gross output, K is capital inputs, L is labour inputs, E is energy 
inputs, M is material inputs, and λ, π, ρ, τ and υ are exogenous, time- 
dependent multipliers representing ‘factor neutral’, ‘capital-augment-
ing’, ‘labour–augmenting’, ‘energy-augmenting’ and ‘materials-aug-
menting’ technical change respectively. Technical change is assumed to 
improve the productivity6 of individual inputs over time (e.g.,τt1 > τt0 

for t1 > t0) independently of changes in relative prices. Hence, energy- 
augmenting technical change should improve aggregate economic- 
based energy efficiency (θE = Y/E), because less energy is required to 
produce the same level of economic output. Increases in the relative 
price of energy should also improve aggregate energy efficiency, 
because this encourages producers to substitute other inputs for energy – 
but since costs have increased, output may fall. In contrast, technical 
change improves energy productivity independently of changes in 
relative prices and without reducing output.7 

Energy-augmenting technical change (τ) is one way of simulating 
improved energy efficiency, but this is not directly observed and hence is 

difficult to measure empirically [54]. In contrast, it is straightforward to 
measure the aggregate economic-based energy efficiency of a sector 
(θE = Y/E), but this depends upon the level and price of each input, the 
current state of technology, and the level of output, as well as upon how 
individual inputs are measured and aggregated. In addition, a one-off or 
ongoing improvement in the productivity of energy inputs (τ) will lower 
the price of ‘effective energy’ (τE) and hence encourage producers to 
substitute (effective) energy for other inputs – which is one of the 
mechanisms contributing to the rebound effect [55]. As a result, a 1% 
improvement in the productivity of energy inputs (τ) within a firm, 
sector or economy may not translate to a 1% improvement in the 
aggregate energy efficiency (θE) of that firm, sector, or economy [56]. 
Also, changes in aggregate energy efficiency may result from changes in 
the level, price, and productivity of non-energy inputs, even in the 
absence of energy-augmenting technical change [56]. Similarly, im-
provements in energy efficiency at one level of aggregation (e.g., an 
industrial sector) may not translate to improvements in energy effi-
ciency at a higher level of aggregation (e.g., a national economy) owing 
to a variety of macroeconomic adjustments – for example, a shift to-
wards more energy intensive goods and services as a consequence of a 
fall in their relative price. More generally there is no necessary link 
between improvements in one measure of energy efficiency (e.g., τ) and 
improvements in another measure (e.g., θE) at either the same or 
different levels of aggregation. Since different studies define and mea-
sure energy efficiency improvements in different ways and for different 
levels of aggregation, great care must be taken when comparing and 
interpreting their results. 

Fig. 2. Historical trends and future scenarios for annual change in final energy intensity (1971–2050). Notes: Annual percentage change in global final energy 
intensity (plotted annually for the historical trend, and as a decadal average for each scenario). Black dotted line is linear regression/projection of historical trends. 
The scenario plots are in four groups: orange (IEA models); green (1.5 ◦C IAMs); purple (2.0 ◦C IAMs) and blue (other models). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

6 We define ‘productivity’ in this context as the level of economic output per 
unit of energy (or labour, capital or materials) input.  

7 Substitution is represented in neoclassical economic theory as movement 
along an isoquant of a production function and technical change as a shift of the 
isoquant [55]. However, the distinction between the two is less clear from an 
engineering perspective: changes in prices may themselves induce technical 
change; and both technical change and substitution may reflect a complex mix 
of investment, operational changes and shifts in the composition of output. 
Classical economic growth theory does not distinguish substitution movements 
from technical change [130]. 
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3.2. Economy-wide rebound effects 

Cost-effective energy efficiency improvements reduce the effective 
price of energy services, such as heating and lighting, and hence 
encourage increased consumption of those services, which in turn will 
partly offset the energy savings per unit of the energy service. This direct 
rebound effect is well established and is now the subject of a large and 
growing empirical literature [21,57–59], especially for efficiency im-
provements by consumers. However, energy efficiency improvements 
can also trigger indirect and macroeconomic responses and associated 
rebound effects [59], with consequent impacts on energy consumption 
throughout the economy (see Appendix B for a summary of the different 
components of the direct, indirect and macroeconomic rebound effects). 

For example, the savings in gasoline consumption from using fuel- 
efficient cars may be spent on other goods and services that also 
require energy to manufacture and use (indirect rebound). Similarly, the 
widespread adoption of energy efficient cars may reduce gasoline de-
mand and hence gasoline prices, that will in turn encourage increased 
consumption of gasoline and other energy (macroeconomic rebound) 
and have secondary impacts in other markets. Both direct and indirect 
rebound effects are partial equilibrium, since the methodologies 
employed to estimate them (e.g., input-output models) hold input and 
commodity prices fixed throughout the economy, and only consider 
variations in the effective price of the energy service itself. In contrast, 
the macroeconomic rebound effects are general equilibrium, since the 
methodologies employed to estimate them (e.g., computable general 
equilibrium models) allow input and commodity prices to vary 
throughout the economy. In practice, these different effects occur 
simultaneously and their net result - the economy-wide rebound effect – is 
normally expressed as a percentage of the expected economy-wide en-
ergy savings, as estimated from a counterfactual scenario where none of 
these adjustments occur [60,61]. 

Economy-wide rebound effects are challenging to estimate, but there 
is growing evidence to suggest they may be large. For example, Saunders 
[26] uses data over the period 1850–2000 to estimate economy-wide 
rebound effects in excess of 60% for Sweden, whilst Bruns et al. [62] 
uses data over the period 1973–2016 to estimate rebound effects of 
~100% for the US (both of these studies are reviewed below). Sugges-
tive evidence is also provided by van Benthem [22] who finds that 
economic growth in developing countries is as energy-intensive as past 
growth in industrialized countries, despite dramatic improvements in 
the energy efficiency of individual technologies. The equality in energy 
intensity suggests that the energy savings from improvements in indi-
vidual technologies have been offset by other trends, such as a shift 
toward more energy-intensive patterns of consumption [10,22]. Simi-
larly, Csereklyei et al. [10] show that the long-term decline in regional 
and global energy intensity is due to countries getting richer, rather from 
them producing particular levels of wealth with less energy. 

The following two sections review some recent estimates of the 
magnitude of economy-wide rebound effects, including both ex-ante 
estimates from macroeconomic models and ex-post estimates from his-
torical data. The selected studies were identified from keyword searches 
in Google Scholar, using the criteria that: a) the studies estimate 
rebound effects at the economy-wide level; and b) they explicitly or 
implicitly include one or more of the macroeconomic effects listed in 
Appendix B. Thus, for example, we exclude studies that focus upon in-
dividual energy services [63], or upon individual economic sectors [64], 
as well as those that rely solely upon input-output models (e.g., 
[65–69]), because the latter neglect macroeconomic rebound effects. 
While the resulting sample is not fully comprehensive, it provides a 
representative coverage of the available evidence and includes the most 
highly cited studies in this area. 

We split the evidence into two groups: estimates from computable 
general equilibrium (CGE) models (Section 4) and estimates from other 
methodologies (Section 5). 

4. Estimates of economy-wide rebound effects from computable 
general equilibrium (CGE) models 

The most common approach to estimating economy-wide rebound 
effects is to use CGE models of regional or national economies. CGE 
models are widely used for energy-economic analysis and are based 
upon social accounting matrices for the relevant economies. They 
consist of a set of simultaneous equations describing the behaviour of 
producers, consumers and other economic actors, together with the in-
terdependencies and feedback between different sectors. Multi-regional 
or global CGE models do this for a number of regions and simulate the 
trading links between those regions. CGE models are parameterised to 
reflect the structural and behavioural characteristics of the relevant 
economies and may be used to estimate the impact of ‘disturbances’ such 
as improvements in the productivity of energy inputs (τ) within one or 
more sectors – which is the most common way of representing improved 
energy efficiency in such models. Here, the counterfactual is simply a 
model run without any energy efficiency improvement [60]. 

CGE models have only recently been used to investigate rebound 
effects, but the literature has grown substantially since the publication 
of an earlier review in 2007 [70]. CGE models have a number of 
well-established limitations (Appendix C), but these must be set against 
the insights they provide into the complex adjustments that follow 
specific disturbances – including the changes in input and commodity 
prices, industrial structure, consumption patterns and trade patterns. 
CGE models allow both the short-run and long-run magnitude of 
rebound effects to be estimated and the relative contribution of different 
mechanisms to be identified. The latter is much harder to achieve 
through econometric analysis, owing to the need to control for multiple 
conflicting variables [59]. 

Table 2 summarises the estimates of long-run, economy-wide 
rebound effects from 21 CGE studies, while the Supplementary Infor-
mation provides more detailed information on each study. Seven of the 
studies model energy efficiency improvements by households, while the 
remainder model improvements by producers. Three of the studies 
[71–73] use multi-regional models to estimate global rebound effects, 
while the remainder use regional (national or subnational) models to 
estimate regional rebound effects. The modelled regions vary widely in 
size, economic structure, openness to trade, aggregate energy intensity 
and other relevant variables - all of which influence the size of the 
estimated effects. All the CGE studies estimate rebound effects for en-
ergy consumption (either in the aggregate, or for different fuels), with 
the associated rebound effects for carbon (or GHG) emissions being 
either larger or smaller depending upon the carbon (or GHG) intensity of 
energy use in different sectors. For example, Bye, et al. [74] estimate that 
energy efficiency improvements in Swedish households reduce 
economy-wide energy use (with a rebound of ~40%) but increase 
economy-wide carbon emissions (with a rebound of >100%), owing to 
the low carbon intensity of Swedish electricity generation. 

All of the studies simulate producer (consumer) behaviour through 
‘nested’ constant elasticity of substitution (CES) production (utility) 
functions (see Appendix C), although the level of aggregation, the 
nesting structure, and the assumed parameter values vary widely from 
one model to another. Most CGE models represent energy efficiency 
improvements as a costless, one-off increase in the productivity of en-
ergy inputs to producers (τ) or in the utility obtained from energy 
commodities by consumers. Notable exceptions are Wei et al. [73] and 
Duarte et al. [89], who model annual improvements in these variables. 
The productivity improvements may affect all energy commodities or a 
subset of those commodities (e.g., only electricity); and may apply to all 
producers/households or to individual sectors/household groups. Bye 
et al. [74] is the only study to allow for the capital costs of energy effi-
ciency improvements, although Broberg et al. [80] include these in their 
sensitivity tests. All of the studies model ‘pure’ energy efficiency im-
provements that leave the productivity of other inputs (or the utility 
obtained from other commodities) unchanged. In practice, energy 
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efficiency improvements may derive from technologies that also 
improve the productivity of other inputs – which in turn could lead to 
larger rebound effects owing to the greater boost to economic output. 

We make several observations from this review. First, the estimated 
size of economy-wide rebound effects in the studies is highly sensitive to 
various features of the relevant economy, as reflected in the assumed or 
calibrated values of parameters such as, the elasticity of supply of capital 
and labour, the elasticity of output demand in different sectors, the 
energy intensity of those sectors, the potential for substitution between 
different energy types, the potential for substitution between energy and 
other inputs, the potential for substitution between energy and other 
consumption goods, the expenditure elasticity of those goods, the elas-
ticities of import and export demand, and the manner in which increased 
tax revenue is used. For example, the contrasting economy-wide esti-
mates from Hanley et al. [91] for Scotland (>100%) and Allan et al. [77] 
for the UK (~30%) are largely explained by differences in the elasticity 
of electricity exports in the modelled regions. Scotland is a major elec-
tricity exporter to England and Wales, but the UK is only a minor elec-
tricity exporter to the EU. Similarly, Allan et al. [77] estimate an 

economy-wide rebound effect of 21% for electricity when assuming an 
inelastic labour supply, but 47% when assuming an elastic labour 
supply. 

Second, the estimates of economy-wide rebound effects are partic-
ularly sensitive to the assumed elasticities of substitution between en-
ergy and other inputs, which indicate how easy it is for producers to 
adjust to a change in relative prices – with easier substitution being 
associated with larger rebound. There is a large empirical literature on 
this topic [92], but the results are contradictory and difficult to inter-
pret, and there is only a tenuous link between empirical estimates of 
substitution elasticities and the assumptions used within CGE models 
[55]. As a result, there is considerable uncertainty about the appropriate 
values for these parameters and hence of the magnitude of the associated 
rebound effects. 

Third, the long-run rebound effect may either be larger or smaller 
than the short-run effect. Although long-term adjustments generally 
increase rebound effects, there are also countervailing forces. For 
example, lower energy demand leads to lower energy prices, and if 
energy demand is inelastic, this will reduce profitability and the return 

Table 2 
Estimates of long-run, economy-wide rebound effects from 21 CGE modelling studies.  

Source Region Model 
Type 

Modelled energy efficiency improvement(s) Baseline estimate of long-run, economy- 
wide rebound effect 

Range of estimates 
in sensitivity tests 

Vikström [75] Sweden Dynamic 15% (12%) in non-energy (energy) sectors. 60% 60% 
Grepperud 

et al. [76]; 
Norway Dynamic Doubling growth rate of electricity productivity in paper, 

metals, chemicals & finance (in turn), and growth rate of oil 
productivity in fisheries and road transport (in turn) 

Not quantified but modest in fisheries and 
road transport, larger in paper and 
chemicals, and >100% in metals  

Allan et al. 
[77] 

UK Dynamic 5% in all production sectors Elec = 27%; 
Non-elec = 31% 

Elec = 12%–58%; 
Non-elec = 13%– 
67% 

Hanley et al. 
[78] 

Scotland Dynamic 5% in all production sectors Elec = 131%; 
Non-elec = 134% 

Elec = 41%–250% 
Non-Elec = 35%– 
244% 

Anson et al. 
[79] 

UK Dynamic 5% in commercial transport sector 39% 37%–105% 

Guerra et al. 
[60] 

Spain Static 5% in all production sectors 87% 15%–230% 

Broberg et al. 
[80] 

Sweden Dynamic 5% in: 
1) all production sectors; 
2) non-energy sectors; 
3) energy-intensive sectors 

1) All sectors = 73% 
2) Non-energy = 69% 
3) Energy-intensive = 78% 

41%–81% 

Yu et al. [81] Georgia 
(US) 

Static 10% in: 
a) all production sectors; 
b) individual production sectors 

All sectors: 
Elec = 12% 
Non-Elec = 25% 
By sector: 309%–728% 

Elec = 10%–13% 
Non-Elec =
22–27% 

Garau et al. 
[82] 

Italy Static 1% in all production sectors 21% 5%–210% 

Lu et al. [83] China Static 5% for each energy type in turn in all production sectors Coal = 21%; ‘ 
Oil-Gas’ = 42%; 
Petroleum = 30%; 
Electricity = 0.1%;  

Wei et al. [73] Global Dynamic 10% in non-energy production sectors 76% 21%–76% 
Koesler et al. 

[72] 
Global Static 10% in German: 

a) manufacturing sectors; 
b) production sectors 

a) 48% 
b) 47%  

Böhringer et al. 
[71] 

Global Static 1% in manufacturing, agriculture and services sectors in China, 
the EU and the US (investigated in turn) 

Manufacturing = 65%–75% 
Agriculture = 70%–90% 
Services = 70–75% 

60%–110% 

Du et al. [84] China Static 1%, 3% and 5% in construction sector Gas 99%; Coal 91% 
Oil 89%; Elec 84%  

Koesler [85] Germany Static 10% in household transport energy use 49% − 5%–49% 
Lecca et al. 

[86] 
UK Dynamic 5% in household energy use 64%  

Figus et al. 
[87] 

Scotland Dynamic 5% in household energy use 50% 50%–78% 

Kulmer et al. 
[88] 

Austria Static 10% in household fossil fuel use 65% 59%–73% 

Duarte et al. 
[89] 

Spain Dynamic 20% reduction in household electricity and vehicle fuel use by 
2030, relative to 2005 

75% 51%–75% 

Bye et al. [74] Sweden Dynamic 27% reduction in household energy use by 2030, relative to 
baseline scenario 

40% 17%–62% 

Barkhordar 
[90] 

Iran Dynamic Adoption of energy efficient lighting by households 44% 35%–52%  
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on capital in energy supply sectors. Lower profitability, in turn, may 
cause energy sector firms to reduce capital investment (‘disinvestment’), 
leading to a long-term reduction in the capital stock, which will drive up 
energy prices and dampen the economy-wide rebound effect [93]. Shale 
oil provides an example of such investment and disinvestment cycles 
within the energy sector, triggered in part by fluctuations in global oil 
prices. 

Fourth, the global rebound effect may be smaller or larger than the 
regional rebound effect (i.e. global energy savings may be larger or 
smaller than regional energy savings), depending upon the model con-
struction and assumptions. For example, Koesler, et al. [72] found that 
energy efficiency improvements in German industry improve the 
competitiveness of German producers, encourage increased exports and 
thereby reduce production and energy use in other regions. At the same 
time, energy efficiency improvements increase German GDP and wages, 
increase domestic demand and imports, and thereby increase production 
and energy use in other regions. The net result is that (in this case) the 
global rebound effect is smaller than the rebound effect within Germany 
alone. 

Fifth, the rebound effects following energy efficiency improvements 
by households may be comparable in size to those following energy 
efficiency improvements by producers. While the latter increase pro-
ductivity, stimulate economic growth, and improve national competi-
tiveness; the former increase demand, put upward pressure on input and 
product prices, and potentially reduce national competitiveness. But 
despite these contrasting impacts, the modelling estimates suggest 
rebound effects of comparable size. For producers, the studies suggest 
that rebound effects tend to be larger following efficiency improvements 
in energy-intensive sectors (including the energy sectors themselves) 
and in sectors with a high output elasticity with respect to energy and/or 
greater scope for substitution between energy and other inputs. 

Finally, and most importantly, the CGE studies consistently estimate 
large economy-wide rebound effects. Specifically, 13 of the 21 studies 
provide baseline estimates of ~50% or more, and several estimate 
almost 100% rebound. As a crude indicator, the mean (median), base-
line estimate of economy-wide rebound effects from the 21 studies is 
58% (55%) – with a mean of 65% (60%) from the 14 producer studies 
and 55% (50%) from the 7 consumer studies. The associated sensitivity 
tests suggest a remarkably wide range of possible outcomes, with the 
lowest estimate of ~12% and the highest estimates exceeding 200%. 
This wide range of estimates, together with the limitations of the 
modelling approach (see Appendix C), limit the confidence we can have 
in these results. Nevertheless, the evidence from CGE studies broadly 
suggests that economy-wide rebound effects may erode more than 
half of the energy savings from improved energy efficiency. 

5. Estimates of economy-wide rebound effects from other 
methods 

Researchers have explored a variety of other (non-CGE) methods for 
estimating economy-wide rebound effects which vary in their specifi-
cation of energy efficiency improvements (Section 3) and their inclusion 
of different rebound mechanisms (Appendix B). Table 3 classifies 12 
selected studies within this category into three broad groups – macro-
economic models, econometric analysis, and growth accounting – and 
summarises the key features of each study, together with their estimates 
of economy-wide rebound effects. We briefly review these studies 

below. 

5.1. Macroeconomic models 

The macroeconomic models in Table 3 differ in important ways from 
the CGE models discussed in Section 4 but incorporate parameters 
estimated from empirical data. Rebound effects are typically estimated 
by comparing model runs with and without energy efficiency 
improvements. 

Saunders [26] employs a Solow-Swan growth model with a CES 
production function that includes a (KL)E nesting structure and 
energy-augmenting technical change. Parameter values are taken from 
Stern and Kander [103], who investigate the contribution of energy to 
Swedish economic growth since 1850. By running scenarios with 
different assumptions for technical change, Saunders estimates an 
economy-wide rebound effect of 50–60% holding energy prices fixed. 
These results are sensitive to the elasticity of substitution between en-
ergy and other inputs (easier substitution leads to larger rebound), but 
the magnitude of this elasticity is uncertain [55,92]. 

Barker et al. [94] employ a disaggregated, macro-econometric model 
of the global economy (41 production sectors, 20 regions, 12 energy 
carriers). They estimate the investment cost and energy savings from the 
energy efficiency policies included in the 2006 IEA World Energy 
Outlook (making explicit allowance for direct rebound effects) and 
incorporate these exogenously into the model. They then estimate the 
indirect and macroeconomic rebound effects by comparing scenarios 
with and without these policies, leading to an estimated economy-wide 
rebound effect of ~50% by 2030, most of which derives from increased 
output. 

Lemoine [95] develops a general equilibrium model and derives 
analytical expressions for partial and general equilibrium rebound ef-
fects following energy efficiency improvements by producers. The ex-
pressions isolate the contribution of individual mechanisms to rebound 
effects, such as changes in labour supply and the expansion and 
contraction of the energy sector. The model is not calibrated to a 
particular economy, but Lemoine estimates a rebound effect of 38% by 
setting input cost shares and substitution elasticities in line with US data, 
with a 28% rebound for improvements in non-energy sectors, and 80% 
for improvements in the energy sector. The results are sensitive to the 
assumed elasticity of substitution between different consumption goods, 
as well as between different production inputs. 

Rausch and Schwerin [96] develop a two-sector (production and 
consumption good-producing) general equilibrium model, where both 
business equipment and consumption goods are produced by a combi-
nation of non-energy capital, labour and energy services – and where the 
latter is produced by a combination of energy-using capital and energy. 
They model investment in different vintages of energy-using capital, 
where the efficiency of each vintage depends upon energy-augmenting 
technical change and energy prices. Both lower-priced capital and 
higher-priced energy lead to more energy efficient capital, but these 
mechanisms have different macroeconomic effects. Rausch and 
Schwerin calibrate the model to US data over the period 1960–2011 and 
estimate rebound effects by comparing the historical trend with a sce-
nario in which energy service prices are fixed. They estimate a rebound 
of 102%, suggesting all expected energy savings were taken back by 
different rebound mechanisms. 
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Table 3 
Estimates of economy-wide rebound effects from a selection of non-CGE studies.  

Category Source Region, Period Model structure Specification of energy 
efficiency 

Method of estimating economy-wide 
rebound effect 

Baseline 
estimate of 
economy-wide 
rebound effect 

Macroeconomic 
models 

Saunders 
[26] 

Sweden, 
1850–2000 

Solow growth model with a (KL, 
E), CES aggregate production 
function incorporating energy- 
augmenting technical change 

Energy-augmenting 
technical change (τ)  

Ratio of modelled actual energy 
savings to modelled potential energy 
savings 

50–60% 

Barker et al. 
[94] 

Global 
2010–2030 

41-sector, 20-region macro- 
econometric model of the global 
economy (E3MG) 

Energy efficiency 
policies included in the 
2006 IEA World Energy 
Outlook 

Direct rebound effect assumed. 
Indirect and macroeconomic effects 
estimated from ratio of modelled 
actual energy savings to modelled 
potential energy savings 

52% 

Lemoine 
[95] 

Non-specific, 
but cost share 
and elasticity 
data from US 

General equilibrium model with 
N production sectors and an 
energy sector 

Energy-augmenting 
technical change (τ)  

Analytical expressions decomposing 
the rebound into a number of partial 
and general equilibrium effects 

38% 
80% energy 
sector 
28% other 
sectors 

Rausch and 
Schwerin 
[96] 

US 
1960–2011 

Two sector (production and 
consumption) general 
equilibrium model with different 
vintages of energy-using capital 

Energy-augmenting 
technical change (τ)  

Ratio of modelled actual energy 
savings to modelled potential energy 
savings 

102% 

Econometric 
analysis 

Adetutu 
et al. [97] 

55 countries 
1980–2010 

Stochastic frontier analysis to 
estimate energy efficiency. 
Autoregressive, dynamic panel 
model to estimate efficiency 
elasticity of energy demand 

Distance to frontier in a 
panel of 55 countries 

Efficiency elasticity of energy 
demand 

90% (short 
term) 
− 36% (long 
term) 

Brockway 
et al. [98] 

China, US, UK 
1980–2010 

(KL,U) CES aggregate production 
function (U = useful exergy), 
with neutral technical change 

Aggregate primary to 
useful exergy efficiency 
of national economy (U/ 
X) 

Elasticity of primary exergy with 
respect to primary to useful exergy 
efficiency 

US 13% 
(12–16%) 
UK 13% (13- 
∞%) 
China 208% 
(55-∞%) 

Wei [99] 40 regions 
1995–2009 

Cobb Douglas aggregate 
production function with input- 
augmenting technical change 

Aggregate primary 
energy efficiency of 
national economy (Y/E) 

Decomposed change in output 
caused by change in energy intensity 

Mean 150% 
Median 120% 
(− 2716% to 
+636%) 

Bruns et al. 
[62] 

US 
1973–2016 

Structural vector auto-regression 
for aggregate GDP, energy use 
and energy prices - used to 
identify energy efficiency shocks 

Energy-augmenting 
technical change 

Estimated impulse response function 
for energy use following energy 
efficiency shock 

~100% 

Growth 
accounting 

Lin & Liu 
[100] 

China, 
1981–2009 

Historical data for energy 
intensity and output changes. 
Malmquist index to estimate 
total factor productivity 

Aggregate energy 
efficiency index derived 
from log mean divisia 
analysis of sectoral final 
energy efficiencies 

Ratio of the change in energy 
consumption from the output growth 
attributed to technical change, to the 
change in energy consumption 
attributed to changes in aggregate 
energy efficiency 

53% 

Shao et al. 
[101] 

China 
1954–2010 

Historical data for energy 
intensity and output changes. 
Latent variable analysis to 
estimate total factor productivity 

Aggregate primary 
energy efficiency (Y/E) 

Ratio of the change in energy 
consumption from the output growth 
attributed to technical change, to the 
change in energy consumption 
attributed to changes in aggregate 
energy efficiency 

40% 
(47% before 
2000 
37% after 
2000) 

Lin and Du 
[102] 

China 
1981–2011 

Historical data for energy 
intensity and output changes. 
Translog aggregate production 
function to estimate total factor 
productivity 

Aggregate energy 
efficiency index, derived 
from log mean divisia 
analysis of sectoral final 
energy efficiencies 

Ratio of the change in energy 
consumption from the output growth 
attributed to technical change, to the 
change in energy consumption 
attributed to changes in aggregate 
energy efficiency 

30–40% 

Brockway 
et al. [98] 

China, US, UK 
1980–2010 

Historical data for energy 
intensity and output changes. 
(KL,U) CES aggregate production 
function (U = useful exergy) to 
estimate total factor productivity 

Aggregate primary 
energy efficiency (Y/E) 

Ratio of the change in energy 
consumption from the output growth 
attributed to technical change, to the 
change in energy consumption 
attributed to changes in aggregate 
energy efficiency 

US 40% 
(15–47%) 
UK 54% 
(50–57%) 
China 77% 
(64–83%)  
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5.2. Econometric analysis 

These studies estimate rebound effects directly from the econometric 
analysis of secondary data. 

Adetutu et al. [97] combine a stochastic frontier analysis with a 
two-stage dynamic panel data approach for 55 countries over the period 
1980–2010. Taking the whole sample together, Adetutu et al. [97] es-
timate a 90% rebound in the short run, but a negative rebound (− 36%) in 
the long run. 

Brockway et al. [98] estimate aggregate, three-input CES production 
functions for the US, UK and China over the period 1980–2010, 
including neutral technical change. They follow Saunders [26] in using 
use a (KL)E nesting structure, but replace primary energy (E) with 
‘useful exergy’ (U) which is the product of primary exergy inputs (X) and 
the estimated primary-to-useful exergy efficiency (ε) of the economy (i. 
e. U = εX). Their measure of useful exergy therefore partly incorporates 
the effect of energy-augmenting technical change [104,105]. Using an 
iterative, non-linear estimation procedure combined with a ‘boot-
strapping’ technique, they find large error bounds on their estimated 
parameters. Following Saunders [106], they estimate the economy-wide 
rebound effect from the elasticity of primary exergy consumption with 
respect to primary-to-useful exergy efficiency [105]. Their estimated 
rebound effect is 13% for the US and UK and >100% for China – sug-
gesting that rebound effects may be higher in energy-intensive, expor-
t-oriented economies. 

Wei and Liu [107] estimate Cobb-Douglas aggregate production 
functions with input-augmenting technical change for 40 countries be-
tween 1995 and 2009. By deriving and parameterising an expression for 
the change in output following a change in aggregate energy intensity, 
Wei et al. [99] estimate a mean rebound effect of 150% for the sample as 
a whole, with estimates for individual countries ranging (rather 
implausibly) from − 2716% (Brazil) to +636% (Indonesia). 

Lastly, Bruns et al. [62] estimate US energy consumption, GDP, and 
energy prices as a function of the lags of these variables and a vector of 
contemporaneous exogenous shocks. They identify the latter through 
Independent Component Analysis, which applies machine learning 
techniques to identify independent linear combinations of the residuals. 
They interpret the energy efficiency shocks as energy-augmenting 
technical change, since they are independent of changes in GDP and 
energy prices. They estimate rebound effects by constructing the im-
pulse response function of energy with respect to the identified energy 
efficiency shocks. Using monthly and quarterly data from the US over 
the period 1973–2016, Bruns et al. [62] estimate a rebound effect of 
100% after four years. 

5.3. Growth accounting 

These studies employ growth accounting techniques, which specify 
the rate of growth of output as the weighted sum of the rate of growth of 
each input, plus the rate of total factor productivity growth (At) – which 
is commonly estimated as a residual [108]. Letting Yt represent aggre-
gate economic output in period t, Et primary energy consumption and It 
aggregate energy intensity (Et/Yt), the studies estimate economy-wide 
rebound effects from variants of Eqn. (1) [98]: 

Rt =
At+1(Yt+1 − Yt)It+1

Yt+1 (It − It+1)
1 

Here the denominator is interpreted as the potential energy savings 
and the numerator is interpreted as the change in energy consumption 
resulting from the output increase attributed to technical change. 

Studies using this approach vary in how they define and estimate 

aggregate energy intensity (It). Both Shao et al. [101] and Brockway 
[98] use aggregate primary energy intensity (Y/ EP), while both Lin and 
Liu [100] and Lin and Du [102] use an energy efficiency index – which 
separates the effect of final energy intensity reductions within individual 
sectors from structural change between those sectors [109]. Studies also 
vary in how they define and estimate total factor productivity (At). For 
example, Brockway et al. [98] estimate an aggregate CES production 
function, Lin and Liu [100] estimate a Malmquist index [110], Lin and 
Du [102] estimate an aggregate translog production function and Shao 
et al. [101] use latent variable analysis. These four studies estimate 
economy-wide rebound effects in the range 30–77%. 

5.4. Summary 

Each of the studies in Table 3 provides useful insights, but each also 
has important limitations. For example, Saunders [26], Wei et al. [99], 
Brockway et al. [98] Lin and Du [102] employ aggregate production 
functions which some economists consider invalid [111,112]. Lemoine 
[95] and Rausch and Schwerin [96] develop simplified general equi-
librium models that have similar drawbacks to CGE models, but with an 
even weaker foundation in empirically measured parameters. The study 
by Adetutu et al. [97] is difficult to interpret and finds a negative 
long-run rebound effect which contradicts the findings of all other 
studies in this area. The growth accounting studies almost certainly 
underestimate rebound effects, owing to their choice of aggregate en-
ergy efficiency as the independent variable (which neglects rebound 
effects from efficiency improvements at lower levels of aggregation) and 
their assumption that increases in output are the primary driver of 
rebound (which neglects other rebound mechanisms). Overall, partic-
ular weight can be placed upon the study by Barker et al. [94], since their 
macro-econometric model overcomes many of the limitations of CGE 
models and their measure of energy efficiency improvements is most 
relevant to public policy by virtue of implementing the anticipated en-
ergy reductions of energy efficiency policies. The study by Bruns et al. 
[62] is also significant, since it opens up a promising new approach to 
estimating rebound effects that relies upon few a-priori assumptions. 
Barker et al. [94] estimate an economy-wide rebound of 50%, while 
Bruns et al. [62] estimate a rebound of ~100%. 

However, the most notable finding from this review of other methods 
is that the studies consistently estimate large economy-wide rebound 
effects. Specifically, 10 of the 12 studies in Table 3 provide baseline 
estimates of ~50% or more, and three estimate >100% rebound. As a 
crude indicator, the mean estimate of economy-wide rebound effects 
from the 12 studies is 71% – with a mean of 62% from the macroeco-
nomic models, 104% from the econometric studies, and 46% from the 
growth accounting studies. This consistency is all the more surprising 
given the widely different measures of energy efficiency (e.g., aggregate 
energy intensity, primary to useful exergy efficiency, energy-augmented 
technical change), the range of methodologies employed (e.g., growth 
accounting, stochastic frontier analysis), the variations in model struc-
ture (e.g., aggregate production functions, general equilibrium models, 
macro-econometric models), and the differences in the number and type 
of rebound mechanisms included (e.g., growth effect only versus most of 
the mechanisms in Appendix B). These differences demonstrate that 
there is much to learn about the determinants and magnitude of 
economy-wide rebound effects and much work to do to in reconciling 
the definitions, approaches and conclusions of different studies. Never-
theless, the results broadly reinforce the conclusion from the review of 
CGE studies, namely that economy-wide rebound effects may erode 
more than half of the energy savings from improved energy 
efficiency. 
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Having reviewed the evidence on the size of economy-wide rebound 
effects, we now examine the treatment of these effects in energy- 
economy models. 

6. Rebound effects in energy-economy models 

The scenarios summarised in Section 2 derive from a variety of 
models with widely differing structures, methodologies, levels of 
complexity, and assumptions for key variables. Here we investigate the 
extent to which these models capture the various mechanisms contrib-
uting to rebound effects and hence whether they may potentially un-
derestimate the size of those effects. We first review the integrated 
assessment models (IAMs) used by the IPCC and then the global energy 
models used by other organisations. We base the review upon model 
documentation and email responses from modelling teams. However, 
some of our judgments are uncertain since there is only limited infor-
mation in the public domain for many of the IAMs, and even less for 
most of the global energy models. 

6.1. Integrated assessment models (IAMs) 

IAMs capture the interactions and feedbacks between the economy, 
energy system, and climate system. They typically combine simplified 
economic and climate models with more detailed modelling of regional 
and global energy systems, but they vary widely in the level of detail 
within each component. Most IAMs model energy supply in great detail, 
but treat the determinants of energy demand in a simpler manner [113]. 
Similarly, for some IAMs key economic variables are exogenous. Both of 
these features limit their ability to endogenously model rebound effects. 

Table 4 summarises some key features of the four IAMs used for the 
scenarios reviewed in Section 2, including their representation of the 
macro-economy, their specification of energy efficiency, and our 
assessment of their ability to capture rebound effects. Each of these IAMs 
is a ‘marker model’ for one of the Shared Socio-economic Pathways 
(SSPs) used in the IPCC’s sixth assessment report – which means that 
each model provides a preferred implementation of the relevant SSP 
[34,114]. 

We make four observations from this review. First, the IAM docu-
mentation contains practically no reference to rebound effects and no 
study to date has used these IAMs to explore or quantify rebound effects 
– suggesting that the IAM community has largely overlooked this topic. 
Although IAM modelling teams regularly carry out model comparisons 
to establish patterns of model behaviour and to explain differences in 
results [119], the relevance of rebound effects to these results remains 
unexplored. One exception is the “Low Energy Demand” Scenario [32] – 
see also Table 1 - that discusses a 50% rebound effect. However, this is 
an exogenous adjustment of energy demand, rather than one generated 
within the model. 

Second, IMAGE and GCAM are partial equilibrium models and 
therefore use exogenous assumptions for economic growth and the 
development of the macro-economy. By construction, such models can 
only include a limited number of rebound mechanisms: specifically in 
GCAM a direct rebound effect from a negative price elasticity for energy 
service demand, potentially combined with an energy market rebound 
effect from a negative price elasticity for aggregate energy demand. 
Whilst more rebound channels were identified in IMAGE, the extent to 
which both IMAGE and GCAM actually capture their mechanisms, 
together with the relative magnitude of each effect, is difficult to discern 
from the model documentation. 

Third, MESSAGE-GLOBIOM and REMIND are general equilibrium in 
the sense that they include endogenous modelling of the macro- 
economy, although with a single-sector growth model, not a multi- 

sectoral one, like CGE models.8 Both models employ aggregate CES 
production functions incorporating energy-augmenting technical 
change, and both are able to capture substitution between energy and 
other inputs and energy price and growth effects – three of the mecha-
nisms contributing to rebound effects (Appendix B). However, since they 
assume a single representative producer, they cannot capture composi-
tion effects or variations in rebound effects between sectors. Similarly, 
since they assume a single representative final good, they cannot capture 
substitution effects for consumers. Both IAMs model multiple types of 
final energy demand (an input into the aggregate production function), 
so have the potential to model income (consumer) and output (pro-
ducer) effects for other energy input services, together with energy 
market effects. 

Fourth, the general equilibrium IAMs treat energy-augmenting 
technical change in a different manner to the CGE studies reviewed in 
Section 4. The latter simulate improved energy efficiency as a costless, 
one-off increase in the productivity of energy inputs (τ) and investigate 
the impacts on aggregate energy intensity (θE) and other macroeco-
nomic variables. They then estimate rebound effects by comparing the 
results with those from a scenario with no technical change. In contrast, 
the IAMs begin with exogenous baseline scenarios for energy demand or 
energy intensity (θE) and use these to calibrate the energy-augmenting 
technical change parameters. The latter remain fixed in the policy sce-
narios, which instead model price-induced substitution of capital for 
energy in response to changes in energy and carbon prices – supple-
mented in some cases with bottom-up modelling of fuel switching and 
technology improvements in individual sectors [120], and in others with 
top-down modeling of price-, learning-, or R&D-induced technological 
changes [121]. Hence, from the perspective of capturing rebound ef-
fects, the IAMs work backwards - they calibrate energy-augmenting 
technical change to an assumed outcome, rather than modelling the 
outcomes from energy-augmenting technical change.9 

In sum, partial equilibrium IAMs exclude the majority of mechanisms 
contributing to rebound effects, while general equilibrium IAMs incor-
porate more of these mechanisms but in a highly simplified manner. 
Moreover, the process of calibrating baseline scenarios to exogenous 
assumptions for energy demand and energy intensity precludes the 
investigation of rebound effects from energy-augmenting technical 
change within a model run. Instead, the energy efficiency improvements 
within IAM policy scenarios reflect a mix of substitution, endogenous 
technological change and bottom-up modelling of technology choices 
within individual sectors. Given that assumptions about energy intensity 
and economic growth appear the most important determinants of future 
emissions [122], this relatively crude modelling of the determinants of 
energy intensity appears an important limitation of current IAMs and 
creates a risk that IAM scenarios will overestimate the potential for 
energy intensity reductions and/or underestimate the impact of 
rebound effects on energy demand. 

6.2. Global energy models 

In contrast to IAMs, the global energy models from bp, Shell, the EIA, 
and the IEA focus solely upon projecting the evolution of the global 
energy system and the balance between energy supply and demand. 
These are all bottom-up simulation models, but they differ in structure, 
level of disaggregation (by regions, sectors, fuels and technologies), and 
key assumptions. A common feature is their reliance upon exogenous 
assumptions for GDP, population, and other key variables. 

The most detailed and best documented model is the IEA World 

8 The AIM/CGE model, another SSP marker model, is an exception and does 
provide a CGE structure.  

9 Different baseline-policy scenario combinations assume different energy 
intensity improvements so in principle pairs of these could be compared to each 
other for rebounds. The authors are grateful to Joeri Rogelj for this observation. 
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Table 4 
Modelling of rebound effects in four Integrated Assessment Models.  

Integrated 
Assessment 
Model 

Type Regions Modelling of the macro-economy Modelling of energy demand and 
improved energy efficiency 

Modelling of rebound effects 

IMAGE Partial 
equilibrium 
Recursive 
dynamic 

26 Limited economic modelling. 
Exogenous assumptions for population, 
per-capita GDP and other variables 

IMAGE model energy demand for a range 
of end-use functions in six sectors, 
including industry [115], transport 
[116], and residential [117]. The end-use 
functions (such as lighting, heating, 
cooling, hot water and appliances in the 
residential sector) are represented on the 
basis of relationships with economic 
activity levels that physical activity 
indicators (such as tonnes of steel, 
passenger kilometers per transport 
mode), structural change and both 
autonomous energy efficiency 
improvements (AEEI) and price induced 
energy efficiency improvements (PIEEI). 
Subsequently, different energy carriers 
and associated technologies compete for 
market share on the basis of costs and 
preferences. The latter also include 
options for electrification. 
AEEI for new capital increases as a 
fraction (0.3–0.45) of the economic 
growth rate. PIEEI estimated from cost 
curves for energy conservation (specified 
for each sector and energy carrier) using 
current energy prices. 
Some sectors modelled in greater detail, 
including competing technologies with 
different energy efficiencies. 

Direct: several. Decreasing costs of energy 
supply in response to efficiency measures 
can lead to increases in activity levels 
(such as transport activity) or reduction of 
investments in efficiency. 
Indirect: Several. Decreasing costs of 
energy supply in response to efficiency 
measures in one sector, can significantly 
impact measures in other sectors. Similar 
holds for measures to reduce costs of 
energy supply. 
Macroeconomic: Energy market effect 
(lower price of energy induces greater 
demand). 

MESSAGE- 
GLOBIOM 

General 
equilibrium 
Intertemporal 
optimisation 

11 MACRO model maximises 
intertemporal utility function of a 
single representative consumer in each 
region. 
Production allocated to current 
consumption, non-energy capital 
investment and energy system costs – 
with the latter estimated by an energy 
model (MESSAGE). 
Employs nested (KL)E CES aggregate 
production function. 

Modelling begins with assumptions about 
energy intensity and GDP. Macro model 
(MACRO) then runs iteratively with the 
energy supply model (MESSAGE), 
adjusting GDP, energy demand and 
energy prices until a consistent solution is 
found [118]. 
Improved energy efficiency is modelled 
in three ways:  
• Substitution of capital for energy in the 

aggregate production function, 
assuming an elasticity of substitution 
of between 0.2 and 0.3.  

• Energy augmenting technical change. 
The calibration process adjusts these 
parameters to ensure consistency with 
exogenous assumptions for regional 
energy intensity.  

• Fuel switching in response to relative 
prices, which can also lead to 
efficiency improvements - for example 
through electrification. 

Direct: positive elasticity of substitution 
in CES production function. 
Indirect: none, since single sector model, 
though income effects possible between 
different energy types 
Macroeconomic: Energy market and 
growth effects 

GCAM Partial 
equilibrium 
Recursive 
dynamic 

32 Limited economic modelling. 
Exogenous assumptions for population, 
per-capita GDP and other variables 

Detailed bottom up modelling of energy 
demand in key sectors (e.g. transport), 
including assumptions about technical 
efficiency and price elasticity 

Direct: negative price elasticities of 
energy service demand. 
Indirect: none 
Macroeconomic: energy market effect. 

REMIND- 
MAgPIE 

General 
equilibrium 
Intertemporal 
optimisation 

11 Maximises intertemporal utility 
function of a single representative 
consumer in each region, accounting 
for inter-regional trade in goods, 
energy and carbon allowances. 
Production allocated to consumption, 
exports, investment, R&D, and energy 
costs (investment, fuel & O&M) – with 
the latter estimated by an energy 
system module. 
Output simulated by non-nested (KLE) 
CES production function, with final 
energy (E) produced by nested CES 
production function - both 
incorporating input-augmenting 
technical change. 

Energy-augmenting parameter (τ) 
assumed to change at the same rate as 
labour augmenting parameter (ρ), 
modified by an adjustment factor that is 
specific to each region and energy 
carrier. Calibration process adjusts the 
former to ensure consistency with 
exogenous scenarios for energy demand. 
Latter, in turn, are based upon historical 
relationships between per-capita GDP 
and energy demand, combined with 
assumptions about long-term 
convergence [119]. 
Improved energy efficiency is modelled 
in three ways: 

Direct: positive elasticity of substitution 
in CES production function. 
Indirect none since single sector model, 
though income effects possible among 
different energy types 
Macroeconomic: energy market and 
growth effects. 

(continued on next page) 
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Energy Model (WEM), which is used to produce the annual IEA World 
Energy Outlook reports (WEOs).10 The WEM distinguishes between six 
industrial sectors, six types of energy service in buildings (e.g., water 
heating, cooking, space cooling), five transport sub-models (e.g. road, 
air, rail), and multiple energy carriers (e.g., gasoline, diesel, liquefied 
natural gas) [45]. A simulation begins with exogenous assumptions for 
the growth in energy service demand, derived by combining econo-
metric analysis of historical trends with assumptions for key scenario 
drivers. The model then calculates the mix of technologies used to meet 
these demands, based upon the age and structure of the existing capital 
stock, energy and carbon prices, and the assumed cost and performance 
of new technologies [45]. Iterations between the energy supply and 
energy demand modules leads to energy prices that match available 
supply with projected demand for each energy carrier. This approach 
allows for the detailed exploration of individual technology choices, but 
provides only limited feedback between the price of energy services and 
the macro-economy – which restricts the ability of the model to capture 
macroeconomic rebounds. 

The WEM does capture energy market effects, however, since lower 
energy demand leads to lower energy prices, which in turn encourages 
increased energy demand. To counteract this rebound, the IEA increase 
transport fuel duty in their 2019 Sustainable Development Scenario “to 
keep end-user prices at the same level as in the Stated Policies Scenario” 
[p.18, 45]. However, they make no mention of comparable adjustments 
to the price of other fuels. 

The approach of the other global energy models with regard to 
rebound is broadly comparable to that of the WEM, but less detail is 
provided in Table 5, as there is less information on the bp, Shell and EIA 
models in the public domain.11 Direct rebound effects are modelled for 
some (but not all) energy services through the use of price elasticities for 
those services, but the relevant assumptions are not transparent. The 
energy market effect is captured via price elasticities, but indirect re-
bounds and other types of macroeconomic rebound are excluded since 
they cannot be simulated within a bottom-up structure. The documen-
tation for each model makes little or no reference to rebound effects and 
contacts with the modelling teams suggest only limited consideration of 
the topic. The 2012 edition of the IEA WEO [123] stated that an 
economy-wide rebound effect of 10% was assumed, but subsequent 
editions of the Outlook make no reference to this assumption. A 10% 
rebound is relatively small, even considering direct effects alone, and is 

Table 4 (continued ) 

Integrated 
Assessment 
Model 

Type Regions Modelling of the macro-economy Modelling of energy demand and 
improved energy efficiency 

Modelling of rebound effects 

GDP is endogenous, but calibrated to 
an exogenous baseline scenario by 
adjusting parameters for labour- 
augmenting technical change.  

• Substitution of capital for energy in the 
aggregate production function, 
assuming an elasticity of substitution 
of between 0.25 and 0.5.  

• Energy augmenting technical change. 
The calibration process adjusts these 
parameters to ensure consistency with 
exogenous assumptions for regional 
energy intensity.  

• Fuel switching in response to relative 
prices. This can also lead to efficiency 
improvements - for example through 
electrification.  

Source: Model documentation [19,42–44] and contacts with the modelling teams. 

Table 5 
Inclusion of rebound effects in a selection of global energy models.  

Global energy 
model 

Modelling of the macro- 
economy 

Modelling of rebound effects 

Global modelling 
for BP Energy 
Outlook 

Exogenous, via regional 
projections of population, 
per-capita GDP, energy 
intensity and other 
variables 

Direct: included via 
assumptions for the own-price 
elasticity of some energy 
services. 
Indirect none 
Macroeconomic: energy 
market effect. 

Shell World 
Energy Model 

Exogenous, via regional 
projections of population 
and per-capita GDP 

Direct: included via 
assumptions for the own-price 
elasticity of energy services, 
together with an ‘energy 
ladder’ effect for energy 
services in developing 
countries. 
Indirect: none. 
Macroeconomic: energy 
market effect 

IEA World Energy 
Model 

Exogenous, via regional 
projections of population, 
per-capita GDP, energy 
service demand and other 
variables. GDP 
assumptions based on 
OECD, IMF and World 
Bank projections, 
combined with 
assumptions about long- 
term convergence of 
growth rates between 
regions. 

Direct: included via 
assumptions for the own-price 
elasticity of some energy 
services 
Indirect: none. 
Macroeconomic: energy 
market effect 

EIA World Energy 
Projection 
System Plus 
(WEPS+) 

Exogenous, via regional 
projections of population, 
per-capita GDP, energy 
service demand and other 
variables. GDP 
assumptions from the 
Oxford Economics Global 
Economic Model (GEM) 
and Global Industry Model 
(GIM) 

Direct: included via 
assumptions for the own-price 
elasticity of some energy 
services 
Indirect: none. 
Macroeconomic: energy 
market effect 

Source: Model documentation [45,46,49,47] and contacts with the modelling 
teams. 

10 The World Energy Outlook is published each year by the IEA, and examines 
how the global energy system could develop in the future, usually to 2030/ 
2040/2050. For the WEO-2020 see https://www.iea.org/reports/world-ene 
rgy-outlook-2020.  
11 Available documentation [45-47,49,] was supplemented by contact with 

modelling teams. 
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inconsistent with the evidence reviewed in Section 4 and 5. For com-
parison, Barker et al. [94] estimate a 50% rebound for the energy effi-
ciency measures included in the 2006 WEO. 

In sum, the structure of the global energy models largely preclude the 
simulation of rebound effects, creating the risk that global energy 
scenarios will overestimate the potential for energy intensity re-
ductions and/or underestimate the impact of rebound effects on 
energy demand. 

7. Discussion 

We now summarise the lessons learned from the preceding sections. 
First, the majority of global energy scenarios include a structural break 
in energy demand trends, beginning around 2020 and moving towards 
absolute decoupling of energy consumption from GDP as climate targets 
tighten. Scenario projections of annual changes in aggregate final energy 
intensity in the period 2020–2030 (− 2.5%/year) is twice the mean 
annual change since 1971 (− 1.2%/year), and has been observed in only 
4 of 47 years in the 1971–2018 period. As Stern observes “this does not 
mean that such a rate of decline is impossible” [p.538, 124], but it does 
raise legitimate queries over the mechanisms and policies that will 
enable this to be achieved. 

Second, the evidence on the size of economy-wide rebound effects 
has grown rapidly over the last few years and has led to broadly 
consistent conclusions. For example, 13 of the 21 CGE modelling studies 
reviewed above estimated an economy-wide rebound effect of 50% or 
more, as did 10 of the 12 studies that used other methodologies. Hence, 
it seems reasonable to conclude that economy-wide rebound effects 
erode more than half of the energy savings from improved energy 
efficiency. This is a larger figure than is commonly found in studies of 
direct rebound effects for consumers [27,125], and the focus on the 
latter within the rebound literature may have diverted attention away 
from the possibility of larger rebound effects at the economy-wide level. 
In addition, there is growing evidence that rebound effects are larger for 
energy efficiency improvements by producers, particularly in 
energy-intensive sectors. Stern [126] also finds growing support for 
large, economy-wide rebound. 

Third, it is challenging to compare the results of the empirical studies 
and to draw overall conclusions, owing to the different definitions of the 
relevant independent variable (improved energy efficiency), together 
with the varying coverage of rebound mechanisms, the differing meth-
odologies employed, and the sensitivity of results to key assumptions. 
Such variability in parameters is particularly evident in CGE models, 
whose results are highly sensitive to assumed values for substitution 
elasticities that lack a firm empirical grounding [55]. However, these 
uncertainties have not prevented the widespread use of CGE models in 
other areas of research, and these methodological differences and limi-
tations have not prevented a growing consensus that economy-wide 
rebound effects are larger than typically assumed. 

Fourth, integrated assessment and global energy models only capture 
a subset of the mechanisms contributing to economy-wide rebound ef-
fects, partly because these models either include a relatively crude 
representation of the macro-economy (e.g., a single representative 
producer and consumer), or rely upon exogenous assumptions for key 
macroeconomic variables, which in turn means there is only limited 
feedback between energy efficiency improvements and broader changes 
in economic structure and energy demand. In addition, rebound effects 
have not been a priority for the modelling teams. The IAM community 
has focused upon other areas of model development, while the global 
energy model community has focused upon updating parameter as-
sumptions and re-estimating scenarios for the next publication. A 

systematic review of the IAM and global energy model structures and 
their inclusion (or not) of different rebound mechanisms would be of 
benefit to all modelling teams. Colmenares et al. [127] provide some 
suggestions in this regard. 

Finally, the representation of energy efficiency improvements within 
empirical studies frequently differs from the simulation of such im-
provements within the integrated assessment and global energy models. 
More than 70% of the reviewed studies simulate energy efficiency im-
provements as a costless, one-off increase in the productivity of energy 
inputs (energy-augmenting technical change). In contrast, the inte-
grated assessment and global energy models tend to start from historical 
correlations between aggregate output and energy demand, and then 
increase the rate at which energy intensity falls by possibly price- 
induced energy-augmenting technical change, without accounting for 
the majority of channels via which rebound operates. As a result, the 
energy efficiency improvements simulated in these scenarios may 
potentially lead to smaller rebound effects than the energy-augmenting 
technical change investigated by the empirical studies. Although 
depicted in current IAMs as a ‘deviation’ from an optimal baseline tra-
jectory and hence growth-retarding by construction, price or policy- 
induced energy-augmenting technical change could also accelerate the 
growth of the economy whilst reducing energy demand, but only if the 
associated rebound effects are relatively modest. Our concern is that the 
opposite may be the case, and that large, economy-wide rebound effects 
could undermine the effectiveness of global climate policy focussed on 
energy efficiency. 

8. Conclusions 

Many climate and energy scenarios project a significant departure 
from the historical close relationship between global energy consump-
tion and GDP and a move towards absolute decoupling. These scenarios 
assume rapid improvements in energy efficiency through all sectors of 
the global economy and a shift towards less energy-intensive con-
sumption patterns. However, the evidence reviewed in this paper sug-
gests that economy-wide rebound effects could erode more than half of 
the anticipated energy savings. Since the mechanisms contributing to 
these effects are only poorly captured by the relevant models, global 
energy scenarios may overestimate the potential for decoupling energy 
consumption from GDP. Large rebound effects may therefore provide 
one explanation for the historical close relationship between energy 
consumption and GDP and at the same time may make it more difficult 
to decouple energy consumption from GDP the future. 

The review has highlighted multiple limitations in the available ev-
idence, which limits the degree of confidence that we can have in the 
results. However, the review also demonstrates that the evidence base is 
growing in quality, quantity, and diversity, and that widely different 
studies provide broadly similar conclusions. Importantly, the implica-
tions of this evidence appears to have been largely neglected by the 
integrated assessment and global energy modelling communities, and 
the current generation of energy-economy models lacks the capacity to 
capture these rebound effects effectively. The inclusion of broader, 
economy-wide rebound effects within energy and IAM models are vital if 
we are to have confidence in global energy scenarios, and if policy-
makers are to effectively anticipate and address the possibility of large 
rebounds. 

We suggest that a research priorities should be to (a) include more 
comprehensive and disaggregated modelling of the macro-economy 
within energy-economy models and (b) to find ways to endogenously 
incorporate a broader range of rebound mechanisms. Efforts are also 
required to (a) reconcile the divergent representations of energy 
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efficiency within both empirical studies in energy-economy models and 
(b) to further explore the implications of different types, sources, and 
locations of energy efficiency improvement. Moving towards more 
robustly reported analytical frameworks within rebound studies would 
allow better comparisons, and eventually meta reviews, such as is 
common in the energy-GDP causality literature [128]. Meantime, if 
large, economy-wide rebound is a possibility, it would be prudent to 
explore scenarios with more limited decoupling of energy consumption 
from GDP and to assess their implications – presumably implying greater 
urgency in decarbonising energy supply. Modelling efforts should also 
extend to estimating and including rebound effects, in conjunction with 
sensitivity testing, and to assessing strategies to offset those effects while 
minimising the impact on welfare. 

In sum, radical departures from the historical energy-GDP trends 
raise important questions about their feasibility. Much greater attention 
should therefore be placed on understanding the determinants of energy 
demand and on assessing the risk of unanticipated outcomes. 

Data statement 

The University of Leeds data repository for this study can be found at 
https://doi.org/10.5518/956. Data included within this depository in-
cludes: summary statistics, model projection data for energy and GDP. 
The IEA World Energy Statistics and Balances can be downloaded with 
institutional or other user licence from https://doi.org/10.1787/enestat 

s-data-en. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors are grateful to the anonymous reviewers for their time 
and helpful comments which have improved the Review. We are 
thankful to Joeri Rogelj for his helpful comments on IAM models, and 
extend our thanks to the modelling teams that responded to our emails 
from the IAM community (MESSAGE, GCAM, IMAGE) and the broader 
energy models included in our study (U.S. Energy Information Admin-
istration, the International Energy Agency, bp plc and Shell). We are also 
grateful to Emmanuel Aramendia, who collected much of the energy- 
GDP datasets presented in Section 2 and Appendix A. Paul Brockway’s 
time was funded by the UK Research and Innovation (UKRI) Council, 
supported under EPSRC Fellowship award EP/R024254/1. Steve Sorrell 
would like to acknowledge the support of the UKRI Council through a 
grant to the Centre for Research on Energy Demand Solutions (grant 
number EP/R035288/1); Victor Court acknowledges the support of the 
Chair Energy and Prosperity, under the aegis of the Risk Foundation.  

Supplementary information 

Supplementary information to this article can be found online at https://doi.org/10.1016/j.rser.2021.110781. 

Appendix A. Primary Energy plots

Fig. A1. Historical trends and future scenarios for global primary energy use and GDP (1971–2050). Notes: Scenario plots are in four groups: orange (IEA models); 
green (1.5 ◦C IAMs); purple (2.0 ◦C IAMs) and blue (other models). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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Fig. A2. Historical trends and future scenarios for annual change in primary energy intensity (1971–2050) Notes: Annual percentage change in global final energy 
intensity (plotted annually for the historical trend, and as a decadal average for each scenario). Black dotted line is linear regression/projection of historical trends. 
The scenario plots are in four groups: orange (IEA models); green (1.5 ◦C IAMs); purple (2.0 ◦C IAMs) and blue (other models). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)2 

Appendix B. Mechanisms contributing to economy-wide rebound effects  

Category Mechanism Source 

Direct rebound effect (partial equilibrium) Income effect (consumers) Changes in the consumption of the energy service, owing to the increase  
in real income stimulated by  
the energy efficiency improvement 

Substitution effect 
(consumers) 

Changes in the consumption of the energy service, owing to a fall in its  
effective price relative to other commodities (holding utility constant) 

Output effect (producers) Changes in the consumption of the energy service owing to the increase  
in output stimulated by the energy efficiency improvement 

Substitution effect 
(producers) 

Changes in the consumption of the energy service, owing to a fall in its  
effective price relative to other inputs (holding output constant) 

Indirect rebound effect (partial equilibrium) Income effect (consumers) Changes in the consumption of other commodities, owing to the increase in  
real income stimulated by the energy efficiency improvement 

Substitution effect 
(consumers) 

Changes in the consumption of other commodities, owing to an increase in  
their effective price relative to the energy service (holding utility constant) 

Output effect (producers) Changes in the consumption of other inputs owing to the increase in  
output stimulated by the energy efficiency improvement 

Substitution effect 
(producers) 

Changes in the consumption of other inputs, owing to an increase in their  
effective price relative to the energy service (holding output constant) 

Macroeconomic rebound effect (general 
equilibrium) 

Energy market effect Changes in energy consumption following changes in energy prices  
(leftward shift of the demand curve for energy) 

Composition effect Changes in energy consumption following structural change in the economy - with  
energy-intensive sectors and goods benefiting more 

Growth effect Changes in energy consumption following investment and increased output  
stimulated by the energy efficiency improvement 

Scale effect Changes in energy consumption following reductions in the price of goods and  
services stimulated by increased output of those goods and services 

Labour supply effect Changes in energy consumption following increases in real wages stimulated by the energy 
efficiency improvement 

Disinvestment effect Changes in energy consumption following disinvestment in the energy supply  
sectors in response to lower energy prices 

Sources: Own elaboration based upon [21,71,93]. 
Note: This list is not exhaustive, the mechanisms are not necessarily additive; and each mechanism may either increase or reduce economy-wide energy consumption 
depending upon the particular situation. The relative importance of these mechanisms will also vary from one context to another and from one type of energy efficiency 
improvement to another.  
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Appendix C. Limitations of Computable General Equilibrium (CGE) models  

• Market and behavioural assumptions: CGE models rely upon standard but frequently unrealistic assumptions about economic behaviour, such as 
market equilibrium, utility maximization, perfect competition and constant returns to scale.  

• Functional Forms: CGE models simulate producer (consumer) behaviour through ‘nested’ constant elasticity of substitution (CES) production 
(utility) functions. These are chosen for their computational convenience, but rely on the assumption that inputs (commodities) are ‘separable’: 
that is, the elasticity of substitution between inputs (commodities) within a nest is unaffected by the level or price of inputs (commodities) outside 
the nest [55]. This assumption typically lacks empirical support. Model results are sensitive to the assumed nesting structure, but this varies from 
one model to another and there is no consensus on where energy inputs should be located within this structure [129]. For example, capital (K), 
labour (L) and energy (E) inputs could be nested as: (KL)E, (KE)L or (LE)K. 

• Calibration: CGE models are calibrated to a social accounting matrix for the base year, with adjustments being made to the data to ensure equi-
librium. But since markets are not in equilibrium, the choice of base year can influence the results. For example, if a particular sector is depressed in 
the base year, the share of profits in the output of the sector would be low.  

• Parameters: CGE parameter values are either determined through calibration, taken from the empirical literature or assumed. But the process of 
compiling parameter values lacks transparency, and the cited empirical studies may use different functional forms and parameter definitions to 
those used in CGE models, as well as applying to different sectors, time-periods and/or levels of aggregation [55]. Model results are sensitive to 
these parameter values, but they vary widely from one model to another. Sensitivity tests are increasingly used, but are typically confined to only a 
small number of relevant parameters.  

• Static versus dynamic: Static CGE models simulate equilibrium states of the economy and compare the initial and final equilibrium after some 
exogenous shock, such as an improvement in energy efficiency. This approach neglects the costs and time taken for the economy to adjust. For 
example, transport and building infrastructures take longer to adjust than other types of capital equipment. Dynamic CGE models explicitly model 
the adjustment process, with the capital stock in any year being dependent upon investment in the previous year. This overcomes some of the 
limitations of static models, but dynamic models are more complex and computationally intensive. Also, both types of model have difficulties 
simulating structural change and the emergence of new technologies and sectors.  

• Model closure: The choice of which variables to set exogenously is termed the model closure. For example, some CGE modellers hold employment 
and the trade balance fixed while others allow these to vary. Of particular importance is whether capital is fixed or adjustable within individual 
sectors and regions, and how wages and labour supply adjust to changes in economic activity. These assumptions can have a major influence on the 
results. 
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