Question	Marking Guidance	Mark	Comments
			1
3.1	M1 moles (= $\frac{25}{1000}$ x 2.0) = 0.050	1	Correct answer (to at least 2 sig fig) scores 4 marks
	M2 heat released = 0.050 x 56.1 (= 2.805 kJ or 2805 J)	1	27 or 26.8°C (from moles of two reagents being added together for M2 , or use of 25 cm ³ in M4) scores 3 marks
	$M3 \Delta T = \frac{q}{mc}$	1	0.013(.4)°C (from not converting kJ to J) scores 3 marks (loses M4) [0.027 or 0.0268°C would score 2 marks (loses M2 and M4)
	2805 1000 x 0.050 x 56.1	1	,
	M4 $\Delta T = \frac{13(.4) (°C)}{50 \times 4.18}$ or $\frac{50 \times 4.18}{50 \times 4.18}$ = 13(.4) (°C)		M1 moles can be shown for either substance or without specifying the substance; if it is shown for both substances, must be correct for both for M1
			Allow ECF from M1 to M2
			Allow ECF from M2 to M4 (providing an attempt to calculate q has been made – no ECF if 56100 or 56.1 is used as q)
			Correct M4 scores M3 . If error made in M4 , M3 could score from substituted values in this expression in M4
			M4 final answer to at least 2 sig fig.
			Penalise M4 for negative temperature rise

